
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Chapter 5 - Functions

Outline
5.1 Introduction

5.2 Program Modules in C

5.3 Math Library Functions

5.4 Functions

5.5 Function Definitions

5.6 Function Prototypes

5.7 Header Files

5.8 Calling Functions: Call by Value and Call by Reference

5.9 Random Number Generation

5.10 Example: A Game of Chance

5.11 Storage Classes

5.12 Scope Rules

5.13 Recursion

5.14 Example Using Recursion: The Fibonacci Series

5.15 Recursion vs. Iteration

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Objectives

• In this chapter, you will learn:

– To understand how to construct programs modularly

from small pieces called functions..

– To introduce the common math functions available in

the C standard library.

– To be able to create new functions.

– To understand the mechanisms used to pass information

between functions.

– To introduce simulation techniques using random

number generation.

– To understand how to write and use functions that call

themselves.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.1 Introduction

• Divide and conquer

– Construct a program from smaller pieces or components

• These smaller pieces are called modules

– Each piece more manageable than the original program

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.2 Program Modules in C

• Functions
– Modules in C

– Programs combine user-defined functions with library functions

• C standard library has a wide variety of functions

• Function calls

– Invoking functions

• Provide function name and arguments (data)

• Function performs operations or manipulations

• Function returns results

– Function call analogy:

• Boss asks worker to complete task

– Worker gets information, does task, returns result

– Information hiding: boss does not know details

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.2 Program Modules in C

main

worker1 worker2 worker3

worker4 worker5

Fig. 5.1 Hierarchical boss function/worker function relationship.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.3 Math Library Functions

• Math library functions

– perform common mathematical calculations

– #include <math.h>

• Format for calling functions
– FunctionName(argument);

• If multiple arguments, use comma-separated list

– printf("%.2f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its

argument

• All math functions return data type double

– Arguments may be constants, variables, or expressions

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.3 Math Library Functions

Function Description Example
sqrt(x) square root of x sqrt(900.0) is 30.0

sqrt(9.0) is 3.0

exp(x) exponential function e
x exp(1.0) is 2.718282

exp(2.0) is 7.389056

log(x) natural logarithm of x

(base e)

log(2.718282) is 1.0
log(7.389056) is 2.0

log10(x) logarithm of x (base 10) log10(1.0) is 0.0
log10(10.0) is 1.0
log10(100.0) is 2.0

fabs(x) absolute value of x fabs(5.0) is 5.0
fabs(0.0) is 0.0
fabs(-5.0) is 5.0

ceil(x) rounds x to the smallest

integer not less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

floor(x) rounds x to the largest

integer not greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

pow(x, y) x raised to power y (x
y
) pow(2, 7) is 128.0

pow(9, .5) is 3.0

fmod(x, y) remainder of x/y as a

floating point number

fmod(13.657, 2.333) is
1.992

sin(x) trigonometric sine of x

(x in radians)

sin(0.0) is 0.0

cos(x) trigonometric cosine of x

(x in radians)

cos(0.0) is 1.0

tan(x) trigonometric tangent of x

(x in radians)

tan(0.0) is 0.0

Fig. 5.2 Commonly used math library functions.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.4 Functions

• Functions
– Modularize a program

– All variables defined inside functions are local variables

• Known only in function defined

– Parameters

• Communicate information between functions

• Local variables

• Benefits of functions
– Divide and conquer

• Manageable program development

– Software reusability

• Use existing functions as building blocks for new programs

• Abstraction - hide internal details (library functions)

– Avoid code repetition

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.5 Function Definitions

• Function definition format
return-value-type function-name(parameter-list)
{

declarations and statements
}

– Function-name: any valid identifier

– Return-value-type: data type of the result (default int)

• void – indicates that the function returns nothing

– Parameter-list: comma separated list, declares parameters

• A type must be listed explicitly for each parameter unless, the

parameter is of type int

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.5 Function Definitions

• Function definition format (continued)
return-value-type function-name(parameter-list)
{

declarations and statements
}

– Definitions and statements: function body (block)

• Variables can be defined inside blocks (can be nested)

• Functions can not be defined inside other functions

– Returning control

• If nothing returned

– return;

– or, until reaches right brace

• If something returned

– return expression;

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_03.c (Part 1

of 2)

1 /* Fig. 5.3: fig05_03.c

2 Creating and using a programmer-defined function */

3 #include <stdio.h>

4

5 int square(int y); /* function prototype */

6

7 /* function main begins program execution */

8 int main()

9 {

10 int x; /* counter */

11

12 /* loop 10 times and calculate and output square of x each time */

13 for (x = 1; x <= 10; x++) {

14 printf("%d ", square(x)); /* function call */

15 } /* end for */

16

17 printf("\n");

18

19 return 0; /* indicates successful termination */

20

21 } /* end main */

22

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23 /* square function definition returns square of an integer */

24 int square(int y) /* y is a copy of argument to function */

25 {

26 return y * y; /* returns square of y as an int */

27

28 } /* end function square */

fig05_03.c (Part 2

of 2)

Program Output1 4 9 16 25 36 49 64 81 100

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_04.c (Part 1

of 2)

1 /* Fig. 5.4: fig05_04.c

2 Finding the maximum of three integers */

3 #include <stdio.h>

4

5 int maximum(int x, int y, int z); /* function prototype */

6

7 /* function main begins program execution */

8 int main()

9 {

10 int number1; /* first integer */

11 int number2; /* second integer */

12 int number3; /* third integer */

13

14 printf("Enter three integers: ");

15 scanf("%d%d%d", &number1, &number2, &number3);

16

17 /* number1, number2 and number3 are arguments

18 to the maximum function call */

19 printf("Maximum is: %d\n", maximum(number1, number2, number3));

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

24

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_04.c (Part 2

of 2)

Program Output
Enter three integers: 22 85 17
Maximum is: 85
Enter three integers: 85 22 17
Maximum is: 85
Enter three integers: 22 17 85
Maximum is: 85

25 /* Function maximum definition */

26 /* x, y and z are parameters */

27 int maximum(int x, int y, int z)

28 {

29 int max = x; /* assume x is largest */

30

31 if (y > max) { /* if y is larger than max, assign y to max */

32 max = y;

33 } /* end if */

34

35 if (z > max) { /* if z is larger than max, assign z to max */

36 max = z;

37 } /* end if */

38

39 return max; /* max is largest value */

40

41 } /* end function maximum */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.6 Function Prototypes

• Function prototype

– Function name

– Parameters – what the function takes in

– Return type – data type function returns (default int)

– Used to validate functions

– Prototype only needed if function definition comes after use

in program

– The function with the prototype

int maximum(int x, int y, int z);

• Takes in 3 ints

• Returns an int

• Promotion rules and conversions

– Converting to lower types can lead to errors

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.6 Function Prototypes

Data types printf conversion
specifications

scanf conversion
specifications

long double %Lf %Lf

double %f %lf

float %f %f

unsigned long int %lu %lu

long int %ld %ld

unsigned int %u %u

int %d %d

short %hd %hd

char %c %c

Fig. 5.5 Promotion hierarchy for data types.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.7 Header Files

• Header files

– Contain function prototypes for library functions

– <stdlib.h> , <math.h> , etc

– Load with #include <filename>

#include <math.h>

• Custom header files

– Create file with functions

– Save as filename.h

– Load in other files with #include "filename.h"

– Reuse functions

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.7 Header Files

Standard library header Explanation

<assert.h> Contains macros and information for adding diagnostics that aid program

debugging.

<ctype.h> Contains function prototypes for functions that test characters for certain

properties, and function prototypes for functions that can be used to

convert lowercase letters to uppercase letters and vice versa.

<errno.h> Defines macros that are useful for reporting error conditions.

<float.h> Contains the floating point size limits of the system.

<limits.h> Contains the integral size limits of the system.

<locale.h> Contains function prototypes and other information that enables a pro-

gram to be modified for the current locale on which it is running. The

notion of locale enables the computer system to handle different conven-

tions for expressing data like dates, times, dollar amounts and large

numbers throughout the world.

<math.h> Contains function prototypes for math library functions.

<setjmp.h> Contains function prototypes for functions that allow bypassing of the

usual function call and return sequence.

<signal.h> Contains function prototypes and macros to handle various conditions that

may arise during program execution.

<stdarg.h> Defines macros for dealing with a list of arguments to a function whose

number and types are unknown.

<stddef.h> Contains common definitions of types used by C for performing certain

calculations.

<stdio.h> Contains function prototypes for the standard input/output library func-

tions, and information used by them.

<stdlib.h> Contains function prototypes for conversions of numbers to text and text

to numbers, memory allocation, random numbers, and other utility

functions.

<string.h> Contains function prototypes for string processing functions.

<time.h> Contains function prototypes and types for manipulating the time and

date.

Fig. 5.6 Some of the standard library header.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.8 Calling Functions: Call by Value and

Call by Reference

• Call by value

– Copy of argument passed to function

– Changes in function do not effect original

– Use when function does not need to modify argument

• Avoids accidental changes

• Call by reference

– Passes original argument

– Changes in function effect original

– Only used with trusted functions

• For now, we focus on call by value

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.9 Random Number Generation

• rand function
– Load <stdlib.h>

– Returns "random" number between 0 and RAND_MAX (at
least 32767)

i = rand();

– Pseudorandom

• Preset sequence of "random" numbers

• Same sequence for every function call

• Scaling
– To get a random number between 1 and n

1 + (rand() % n)

• rand() % n returns a number between 0 and n - 1

• Add 1 to make random number between 1 and n

1 + (rand() % 6)

– number between 1 and 6

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.9 Random Number Generation

• srand function

– <stdlib.h>

– Takes an integer seed and jumps to that location in its

"random" sequence

srand(seed);

– srand(time(NULL));/*load <time.h> */

• time(NULL)

– Returns the time at which the program was compiled in

seconds

– “Randomizes" the seed

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_07.c

1 /* Fig. 5.7: fig05_07.c

2 Shifted, scaled integers produced by 1 + rand() % 6 */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 int i; /* counter */

10

11 /* loop 20 times */

12 for (i = 1; i <= 20; i++) {

13

14 /* pick random number from 1 to 6 and output it */

15 printf("%10d", 1 + (rand() % 6));

16

17 /* if counter is divisible by 5, begin new line of output */

18 if (i % 5 == 0) {

19 printf("\n");

20 } /* end if */

21

22 } /* end for */

23

24 return 0; /* indicates successful termination */

25

26 } /* end main */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

6 6 5 5 6

5 1 1 5 3

6 6 2 4 2

6 2 3 4 1

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_08.c (Part 1

of 3)

1 /* Fig. 5.8: fig05_08.c

2 Roll a six-sided die 6000 times */

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 int frequency1 = 0; /* rolled 1 counter */

10 int frequency2 = 0; /* rolled 2 counter */

11 int frequency3 = 0; /* rolled 3 counter */

12 int frequency4 = 0; /* rolled 4 counter */

13 int frequency5 = 0; /* rolled 5 counter */

14 int frequency6 = 0; /* rolled 6 counter */

15

16 int roll; /* roll counter */

17 int face; /* represents one roll of the die, value 1 to 6 */

18

19 /* loop 6000 times and summarize results */

20 for (roll = 1; roll <= 6000; roll++) {

21 face = 1 + rand() % 6; /* random number from 1 to 6 */

22

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_08.c (Part 2

of 3)

23 /* determine face value and increment appropriate counter */

24 switch (face) {

25

26 case 1: /* rolled 1 */

27 ++frequency1;

28 break;

29

30 case 2: /* rolled 2 */

31 ++frequency2;

32 break;

33

34 case 3: /* rolled 3 */

35 ++frequency3;

36 break;

37

38 case 4: /* rolled 4 */

39 ++frequency4;

40 break;

41

42 case 5: /* rolled 5 */

43 ++frequency5;

44 break;

45

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_08.c (Part 3

of 3)

Program OutputFace Frequency
1 1003
2 1017
3 983
4 994
5 1004
6 999

45

46 case 6: /* rolled 6 */

47 ++frequency6;

48 break;

49 } /* end switch */

50

51 } /* end for */

52

53 /* display results in tabular format */

54 printf("%s%13s\n", "Face", "Frequency");

55 printf(" 1%13d\n", frequency1);

56 printf(" 2%13d\n", frequency2);

57 printf(" 3%13d\n", frequency3);

58 printf(" 4%13d\n", frequency4);

59 printf(" 5%13d\n", frequency5);

60 printf(" 6%13d\n", frequency6);

61

62 return 0; /* indicates successful termination */

63

64 } /* end main */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_09.c (Part 1

of 2)

1 /* Fig. 5.9: fig05_09.c

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 int i; /* counter */

10 unsigned seed; /* number used to seed random number generator */

11

12 printf("Enter seed: ");

13 scanf("%u", &seed);

14

15 srand(seed); /* seed random number generator */

16

17 /* loop 10 times */

18 for (i = 1; i <= 10; i++) {

19

20 /* pick a random number from 1 to 6 and output it */

21 printf("%10d", 1 + (rand() % 6));

22

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_09.c (Part 2

of 2)

Program Output

23 /* if counter is divisible by 5, begin a new line of output */

24 if (i % 5 == 0) {

25 printf("\n");

26 } /* end if */

27

28 } /* end for */

29

30 return 0; /* indicates successful termination */

31

32 } /* end main */

 Enter seed: 67
6 1 4 6 2
1 6 1 6 4

Enter seed: 867
2 4 6 1 6
1 1 3 6 2

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.10 Example: A Game of Chance

• Craps simulator

• Rules

– Roll two dice

• 7 or 11 on first throw, player wins

• 2, 3, or 12 on first throw, player loses

• 4, 5, 6, 8, 9, 10 - value becomes player's "point"

– Player must roll his point before rolling 7 to win

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_10.c (Part 1

of 4)

1 /* Fig. 5.10: fig05_10.c

2 Craps */

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <time.h> /* contains prototype for function time */

6

7 /* enumeration constants represent game status */

8 enum Status { CONTINUE, WON, LOST };

9

10 int rollDice(void); /* function prototype */

11

12 /* function main begins program execution */

13 int main()

14 {

15 int sum; /* sum of rolled dice */

16 int myPoint; /* point earned */

17

18 enum Status gameStatus; /* can contain CONTINUE, WON, or LOST */

19

20 /* randomize random number generator using current time */

21 srand(time(NULL));

22

23 sum = rollDice(); /* first roll of the dice */

24

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_10.c (Part 2

of 4)

25 /* determine game status based on sum of dice */

26 switch(sum) {

27

28 /* win on first roll */

29 case 7:

30 case 11:

31 gameStatus = WON;

32 break;

33

34 /* lose on first roll */

35 case 2:

36 case 3:

37 case 12:

38 gameStatus = LOST;

39 break;

40

41 /* remember point */

42 default:

43 gameStatus = CONTINUE;

44 myPoint = sum;

45 printf("Point is %d\n", myPoint);

46 break; /* optional */

47 } /* end switch */

48

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_10.c (Part 3

of 4)

49 /* while game not complete */

50 while (gameStatus == CONTINUE) {

51 sum = rollDice(); /* roll dice again */

52

53 /* determine game status */

54 if (sum == myPoint) { /* win by making point */

55 gameStatus = WON;

56 } /* end if */

57 else {

58

59 if (sum == 7) { /* lose by rolling 7 */

60 gameStatus = LOST;

61 } /* end if */

62

63 } /* end else */

64

65 } /* end while */

66

67 /* display won or lost message */

68 if (gameStatus == WON) {

69 printf("Player wins\n");

70 } /* end if */

71 else {

72 printf("Player loses\n");

73 } /* end else */

74

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_10.c (Part 4

of 4)

75 return 0; /* indicates successful termination */

76

77 } /* end main */

78

79 /* roll dice, calculate sum and display results */

80 int rollDice(void)

81 {

82 int die1; /* first die */

83 int die2; /* second die */

84 int workSum; /* sum of dice */

85

86 die1 = 1 + (rand() % 6); /* pick random die1 value */

87 die2 = 1 + (rand() % 6); /* pick random die2 value */

88 workSum = die1 + die2; /* sum die1 and die2 */

89

90 /* display results of this roll */

91 printf("Player rolled %d + %d = %d\n", die1, die2, workSum);

92

93 return workSum; /* return sum of dice */

94

95 } /* end function rollRice */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

Player rolled 5 + 6 = 11

Player wins

Player rolled 4 + 1 = 5

Point is 5

Player rolled 6 + 2 = 8

Player rolled 2 + 1 = 3

Player rolled 3 + 2 = 5

Player wins

Player rolled 1 + 1 = 2

Player loses

Player rolled 1 + 4 = 5

Point is 5

Player rolled 3 + 4 = 7

Player loses

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.11 Storage Classes

• Storage class specifiers

– Storage duration – how long an object exists in memory

– Scope – where object can be referenced in program

– Linkage – specifies the files in which an identifier is known

(more in Chapter 14)

• Automatic storage

– Object created and destroyed within its block

– auto: default for local variables

auto double x, y;

– register: tries to put variable into high-speed registers

• Can only be used for automatic variables

register int counter = 1;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.11 Storage Classes

• Static storage

– Variables exist for entire program execution

– Default value of zero

– static: local variables defined in functions.

• Keep value after function ends

• Only known in their own function

– extern: default for global variables and functions

• Known in any function

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.12 Scope Rules

• File scope

– Identifier defined outside function, known in all functions

– Used for global variables, function definitions, function

prototypes

• Function scope

– Can only be referenced inside a function body

– Used only for labels (start:, case: , etc.)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.12 Scope Rules

• Block scope

– Identifier declared inside a block

• Block scope begins at definition, ends at right brace

– Used for variables, function parameters (local variables of

function)

– Outer blocks "hidden" from inner blocks if there is a variable

with the same name in the inner block

• Function prototype scope

– Used for identifiers in parameter list

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_12.c (Part 1

of 3)

1 /* Fig. 5.12: fig05_12.c

2 A scoping example */

3 #include <stdio.h>

4

5 void useLocal(void); /* function prototype */

6 void useStaticLocal(void); /* function prototype */

7 void useGlobal(void); /* function prototype */

8

9 int x = 1; /* global variable */

10

11 /* function main begins program execution */

12 int main()

13 {

14 int x = 5; /* local variable to main */

15

16 printf("local x in outer scope of main is %d\n", x);

17

18 { /* start new scope */

19 int x = 7; /* local variable to new scope */

20

21 printf("local x in inner scope of main is %d\n", x);

22 } /* end new scope */

23

24 printf("local x in outer scope of main is %d\n", x);

25

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_12.c (Part 2

of 3)

26 useLocal(); /* useLocal has automatic local x */

27 useStaticLocal(); /* useStaticLocal has static local x */

28 useGlobal(); /* useGlobal uses global x */

29 useLocal(); /* useLocal reinitializes automatic local x */

30 useStaticLocal(); /* static local x retains its prior value */

31 useGlobal(); /* global x also retains its value */

32

33 printf("local x in main is %d\n", x);

34

35 return 0; /* indicates successful termination */

36

37 } /* end main */

38

39 /* useLocal reinitializes local variable x during each call */

40 void useLocal(void)

41 {

42 int x = 25; /* initialized each time useLocal is called */

43

44 printf("\nlocal x in a is %d after entering a\n", x);

45 x++;

46 printf("local x in a is %d before exiting a\n", x);

47 } /* end function useLocal */

48

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_12.c (Part 3

of 3)

49 /* useStaticLocal initializes static local variable x only the first time

50 the function is called; value of x is saved between calls to this

51 function */

52 void useStaticLocal(void)

53 {

54 /* initialized only first time useStaticLocal is called */

55 static int x = 50;

56

57 printf("\nlocal static x is %d on entering b\n", x);

58 x++;

59 printf("local static x is %d on exiting b\n", x);

60 } /* end function useStaticLocal */

61

62 /* function useGlobal modifies global variable x during each call */

63 void useGlobal(void)

64 {

65 printf("\nglobal x is %d on entering c\n", x);

66 x *= 10;

67 printf("global x is %d on exiting c\n", x);

68 } /* end function useGlobal */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

local x in outer scope of main is 5

local x in inner scope of main is 7

local x in outer scope of main is 5

local x in a is 25 after entering a

local x in a is 26 before exiting a

local static x is 50 on entering b

local static x is 51 on exiting b

global x is 1 on entering c

global x is 10 on exiting c

local x in a is 25 after entering a

local x in a is 26 before exiting a

local static x is 51 on entering b

local static x is 52 on exiting b

global x is 10 on entering c

global x is 100 on exiting c

local x in main is 5

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.13 Recursion

• Recursive functions

– Functions that call themselves

– Can only solve a base case

– Divide a problem up into

• What it can do

• What it cannot do

– What it cannot do resembles original problem

– The function launches a new copy of itself (recursion step)

to solve what it cannot do

– Eventually base case gets solved

• Gets plugged in, works its way up and solves whole problem

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.13 Recursion

• Example: factorials
– 5! = 5 * 4 * 3 * 2 * 1

– Notice that

• 5! = 5 * 4!

• 4! = 4 * 3! ...

– Can compute factorials recursively

– Solve base case (1! = 0! = 1) then plug in

• 2! = 2 * 1! = 2 * 1 = 2;

• 3! = 3 * 2! = 3 * 2 = 6;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.13 Recursion

5!

(a) Sequenc e of rec ursive c alls. (b) Values returned from eac h recursive c all.

Final va lue = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

5 * 4!

1

4 * 3!

3 * 2!

2 * 1!

5!

5 * 4!

1

4 * 3!

3 * 2!

2 * 1!

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_14.c (Part 1

of 2)

1 /* Fig. 5.14: fig05_14.c

2 Recursive factorial function */

3 #include <stdio.h>

4

5 long factorial(long number); /* function prototype */

6

7 /* function main begins program execution */

8 int main()

9 {

10 int i; /* counter */

11

12 /* loop 10 times. During each iteration, calculate

13 factorial(i) and display result */

14 for (i = 1; i <= 10; i++) {

15 printf("%2d! = %ld\n", i, factorial(i));

16 } /* end for */

17

18 return 0; /* indicates successful termination */

19

20 } /* end main */

21

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_14.c (Part 2

of 2)

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880

10! = 3628800

22 /* recursive definition of function factorial */

23 long factorial(long number)

24 {

25 /* base case */

26 if (number <= 1) {

27 return 1;

28 } /* end if */

29 else { /* recursive step */

30 return (number * factorial(number - 1));

31 } /* end else */

32

33 } /* end function factorial */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.14 Example Using Recursion: The

Fibonacci Series

• Fibonacci series: 0, 1, 1, 2, 3, 5, 8...

– Each number is the sum of the previous two

– Can be solved recursively:

• fib(n) = fib(n - 1) + fib(n – 2)

– Code for the fibonacci function

long fibonacci(long n)

{

if (n == 0 || n == 1) // base case

return n;

else

return fibonacci(n - 1) +
fibonacci(n – 2);

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.14 Example Using Recursion: The

Fibonacci Series

• Set of recursive calls to function fibonacci

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_15.c (Part 1

of 2)

1 /* Fig. 5.15: fig05_15.c

2 Recursive fibonacci function */

3 #include <stdio.h>

4

5 long fibonacci(long n); /* function prototype */

6

7 /* function main begins program execution */

8 int main()

9 {

10 long result; /* fibonacci value */

11 long number; /* number input by user */

12

13 /* obtain integer from user */

14 printf("Enter an integer: ");

15 scanf("%ld", &number);

16

17 /* calculate fibonacci value for number input by user */

18 result = fibonacci(number);

19

20 /* display result */

21 printf("Fibonacci(%ld) = %ld\n", number, result);

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

26

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

fig05_15.c (Part 2

of 2)

Program Output
Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1) = 1

Enter an integer: 2
Fibonacci(2) = 1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 4
Fibonacci(4) = 3

27 /* Recursive definition of function fibonacci */

28 long fibonacci(long n)

29 {

30 /* base case */

31 if (n == 0 || n == 1) {

32 return n;

33 } /* end if */

34 else { /* recursive step */

35 return fibonacci(n - 1) + fibonacci(n - 2);

36 } /* end else */

37

38 } /* end function fibonacci */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Program Output

(continued)

Enter an integer: 5
Fibonacci(5) = 5

Enter an integer: 6
Fibonacci(6) = 8

Enter an integer: 10
Fibonacci(10) = 55

Enter an integer: 20
Fibonacci(20) = 6765

Enter an integer: 30
Fibonacci(30) = 832040

Enter an integer: 35
Fibonacci(35) = 9227465

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.14 Example Using Recursion: The

Fibonacci Series

fibonacci(3)

return

return

+

+ return 1

return 1

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

return 0

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.15 Recursion vs. Iteration

• Repetition

– Iteration: explicit loop

– Recursion: repeated function calls

• Termination

– Iteration: loop condition fails

– Recursion: base case recognized

• Both can have infinite loops

• Balance

– Choice between performance (iteration) and good software

engineering (recursion)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5.15 Recursion vs. Iteration
Chapter Recursion Examples and Exercises

Chapter 5 Factorial function

Fibonacci functions

Greatest common divisor

Sum of two integers

Multiply two integers

Raising an integer to an integer power

Towers of Hanoi

Recursive main
Printing keyboard inputs in reverse

Visualizing recursion

Chapter 6 Sum the elements of an array

Print an array

Print an array backwards

Print a string backwards

Check if a string is a palindrome

Minimum value in an array

Selection sort

Quicksort

Linear search

Binary search

Chapter 7 Eight Queens

Maze traversal

Chapter 8 Printing a string input at the keyboard backwards

Chapter 12 Linked list insert

Linked list delete

Search a linked list

Print a linked list backwards

Binary tree insert

Preorder traversal of a binary tree

Inorder traversal of a binary tree

Postorder traversal of a binary tree

Fig. 5.17 Summary of recursion examples and exercises in the text.

