Chapter 10. Key-management
Distribution of Public Keys:

· Public announcement – it is convenient, but anyone can forge such a public announcement: some user can pretend to be user A and send a public key to another participant or broadcast such a public key. Until user A discovers the forgery, the forger is able to read all encrypted messages intended for A and can use the forged keys for authentication
· Publicly available directory – provides greater security. Maintenance and distribution of the public directory is a responsibility of some trusted entity or organization. Participants could access the directory electronically. For this purpose, authenticated communication from the authority to the participant is mandatory. However, if an opponent succeeds in obtaining or computing the private key of the directory authority, the opponent could authoritatively pass out counterfeit public keys and subsequently impersonate any participant and eavesdrop on messages sent to any participant
· Public-key authority

[image: image1.png]Public-key

/ Authority.

(1) Requell | Time, (@) Request | Time,
(2) Egg KU T Request 1 Timey |

(8) EgR KU | Request | Times]

Responder

A B
¥‘6'!Au ™ \3\/

() gy, [V]

Initiator

Figure 10.3 Public-Key Distribution Sc

Distribution of Public Keys (Cont 1)
Thus, a total of 7 messages are required. However, the initial 4 messages need be used infrequently because both A and B can save the other’s public key for future use, a technique known as caching. Periodically, a user should request fresh copies of the public keys of its correspondents to ensure security. Public-key authority is a bottleneck. As before, the directory of names and public keys maintained by the authority is vulnerable to tampering
· Public-key certificates

[image: image2.png]Certificate

/ Authority ‘\

KUy

A= EKR g0 lmM 1D KU, |
uz ERRp, | Times, 1D, KU

‘¥_//

B

(2) Cg'

Each participant applies to the certificate authority, supplying a public key and requesting a certificate. Application must be in person or by some form of secure authenticated communication. The timestamp Time validates the currency of the certificate and serves something as expiration date. If certificate is sufficiently old, it is assumed to be expired.

Public-Key Distribution of Secret Keys

Once public keys have been distributed or have become accessible, secure communication that thwarts eavesdropping and tampering is possible. However, few users will wish to make exclusive use of public-key encryption for communication because of the relatively slow data rates that can be achieved. Accordingly, public-key encryption is more reasonably viewed as a vehicle for the distribution of secret keys to be used for the conventional encryption.

Simple Secret Key Distribution

[image: image3.png]Figure 10.5 Simple Use of Public-Key Encryption to Establish a Session Key

This protocol is vulnerable to an active attack. If an opponent, E, has control of the intervening communication channel, then E can compromise the communication in the following fashion without being detected:

1. A generates a public/private key pair [KUa, KRa] and transmits a message intended for B consisting of KUa and an identifier of IDA
2. E intercepts the message, creates its own public/private key pair [KUe, KRe] and transmits KUe|| IDA to B

3. B generates a secret key, Ks, and transmits EKUe[Ks]

4. E intercepts the message, and learns Ks by computing DKRe[EKUe[Ks]]

5. E transmits EKUa[Ks] to A

The result that both A and B know Ks and are unaware that Ks has also been revealed by E. Thus, this simple protocol is only useful in an environment where the only threat is eavesdropping.
Secret Key Distribution with Confidentiality and Authentication

Protects against both active and passive attacks:

[image: image4.png]‘I'F‘I\(,” INyIHID 4]

/_(Z’k““ “]H\ZI\

Initiator Responder

A \ B
3) By, \\1__/

@) Egp[Exr JK]

Figure 10.6 Public-Key Distribution of Secret Keys

A Hybrid Scheme
Another way to use public-key encryption is to distribute secret keys by a Key Distribution Center (KDC) that shares a secret master key with each user and distributes secret session keys encrypted with the master key. A public-key scheme is used to distribute the master keys.
With a three-level hierarchy (public keys, master, session) public-key encryption is used only occasionally to update the master key between a user and the KDC.

Diffie-Hellman Key Exchange

The 1st published public-key algorithm was invented by Whitfield Diffie and Martin Hellman in 1976 and is generally referred to as Diffie-Hellman key exchange. The purpose of the algorithm is to enable two users to exchange a key securely that can then be used for subsequent encryption of messages. The algorithm itself is limited to exchange of the keys.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define the discrete logarithm as follows. First, we define a primitive root of a prime number p as one whose powers generate all the integers from 1 to p-1. That is, if a is a primitive root of the pumber p, then the numbers
a mod p, a2 mod p, .., ap-1 mod p

Diffie-Hellman Key Exchange (Cont 1)
are distinct and consist of the integers from 1 through p-1 in some permutation. For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

[image: image5.wmf]p

i

p

a

b

i

<

£

º

0

,

mod

.

The exponent i is referred to as the discrete logarithm, or index of b for the base a, mod p. This value is denoted as inda,p(b). Diffie-Hellman key exchange is summarized in Figure 10.7:

[image: image6.png]ments

q prime number
« < qand «a primitive root of g
User A Ky tion

Select private X, Xy<q
Caleulate public ¥ o= modg

User B Key

seneration

Seleet private X

Caleulate public ¥;, Yy= oo modg

et Key by User A

K= modg

Gen

tion of Secret Key by User B

modg

Figure 10.7 The Diffie-Hellman Key Exchange Algo

Diffie-Hellman Key Exchange (Cont 2)
Because XA and XB are private, the opponent is forced to take a discrete logarithm to determine the key. For example, attacking the secret key of user B, the opponent must compute

[image: image7.wmf])

(

,

B

q

B

Y

ind

X

a

=

The opponent then can calculate the key K in the same manner as user B calculates it. For large primes, such an attack is considered infeasible.

Let’s consider example. Key exchange is based on the use of the prime number q=353 and a primitive root of 353, in this case
[image: image8.wmf]a

=3. A and B select secret keys XA=97 and XB=233, respectively.

Each computes its public key:

A computes YA=397 mod 353 = 40,

B computes YB=3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

A computes K=
[image: image9.wmf]160

353

mod

248

353

mod

)

(

97

=

=

A

X

B

Y

,

B computes K=
[image: image10.wmf]160

353

mod

40

353

mod

)

(

233

=

=

B

X

A

Y

.
We assume an attacker would have available the following information:

q=353,
[image: image11.wmf]a

=3, YA= 40, YB= 248.

In this simple example, it would be possible by brute force attack to determine the secret key 160. In particular, the attacker E can determine the common key by discovering a solution to the equation
[image: image12.wmf]40

353

mod

3

=

a

 or the equation
[image: image13.wmf]248

353

mod

3

=

a

. The brute-force attack is to calculate powers of 3 modulo 353, stopping when result equals either 40 or 248. The desired answer is reached with the exponent value of 97, which provides

[image: image14.wmf]40

353

mod

3

97

=

With larger numbers, problem becomes impractical.

Chapter 11. Message authentication and hash functions

Any message authentication or digital signature mechanism can be viewed as having fundamentally two levels. At the lower level, there must be some sort of function that produces an authenticator: a value to be used to authenticate a message. This lower-level function is then used as primitive in a high-level authentication protocol that enables a receiver to verify the authenticity of a message. We consider now types of functions that can be used to produce authenticator. These may be grouped into three classes:

· Message encryption – the ciphertext of the entire message serves as its authenticator

· Message authentication code (MAC) – a public function of the message and a secret key that produces a fixed-length value that serves as the authenticator

· Hash function – A public function that maps a message of any length into a fixed-length hash value, which serves as authenticator

Message Encryption
[image: image15.png]A S0urce A——

v ? >
I3 Ex(1)
(a) Symmsetric encryption: confidentiality and authentication
v >(; > @ K
Exu, ()
KUy K KRy
(b) Public-key encryption: confidentiality
v >(; » @ » M
KR, Exr (M) KU,
(@) Public-key encryption: authentication and signature
Exu, [Exn, (M)
M M

KR,

(d) Public-key encryption: confidentiality. authentication, and signature

Er (M)

KUy

Exy, Ex,00)

KRy

Exr (M)

¢ 11.1 Basic Uses of Message Encryvption

KU,

In the case of binary plaintexts, it is difficult to realize whether this plaintext is legitimate. So, opponent can simply issue messages with random content purporting to come from a legitimate user.
We can append an error-detecting code, also known as a frame check sequence (FCS) or checksum:
Message Encryption (Cont 1)

[image: image16.png]- Source A > <4———Destination B———»

M I = M

)

Compare
EgIMIEM)| f

(a) Internal error control

T

» »? >\ ©

EglM) K

b

M

E%,\

ExlM] Compare
4
F(EM)

(b) External error control

Figure 11.2 Internal and External Error Control

With external error control, an opponent can construct messages with valid error-control codes.

Any sort of structuring added to the transmitted message serves to strengthen the authentication capabilities. Such structure is provided by the use of a communications architecture consisting of layered protocols. As an example, consider the structure of messages transmitted using TCP/IP protocol. Figure 11.3 shows the format of a TCP Segment:
Message Encryption (Cont 2)

[image: image17.png]20 octets

0

4 10 16

Source Port

31

Destination Port

Sequence Number

Acknowledgement Number
(],;,:‘c“ Reserved Flags Window
Checksum Urgent Pointer
Options + Padding

Application Data

Figure 11.3 TCP Segment

Confidentiality, authentication and signature may be also provided by public-key cryptography as it is shown in Figure 11.1, b-d.
Message Authentication Code

[image: image18.png]4——Source A———— «——Destination B——»
¢
v

K ! Compare
/ 4
e

(a) Message a

‘\ K Compare

Exyl M| Cy (M)

/
ChyM)
b) Message authentication and confidentiality: authentication tied to plaintext
Eg,[M]
v . © ’ ?_' M
« g Compare K
/ K
/
Cyy[Egy (M)

ty: authentication tied to ciphertext

Figure 11.4 Basic Uses of Message Authentication Code (MAC)

A MAC function is similar to encryption, but MAC algorithm need not be reversible – it is many-to-one function. Consider the following MAC algorithm:
Let M=X1||X2||..||Xm be a message treated as a concatenation of 64-bit blocks Xi. Then define

CK(M)=EK[X1+X2+..+Xm],

Where + is XOR operation and DES encryption is used.

One of the most widely used MACs, referred to as Data Authentication Algorithm, and is based on DES. The algorithm is both a FIPS PUB 113 and ANSI standard X9.17:
Message Authentication Code (Cont 1)
[image: image19.png]Time =1 Time =2 Time=N -1 Time =N

IJ‘ > .
(64 bits) A o Dy
Kl poropt o o ok DES K-l
(56 bits)) inerypt | L s,] ()
y 1
0, 0 1 p 7
(64 bits) 2 . vt X
=
DAC

(16 to 64 bits)

Figure 11.6 Data Authentication Algorithm (FIPS PUB 113)

Hash Function

A hash value h is of the form:

h=H(M)

where M is a message. One of the simplest hash functions is the bit-by-bit exclusive –OR:

[image: image20.png]bit 1 bit 2 o o e bit n
block 1 by, by, b,
block 2 by, by, b,
block m Ol by, nin
hash code ¢ C, C

Figure 11.7 Simple Hash Function Using Bitwise XOR

General structure of secure hash code, resisting to changes of messages, follows:
Hash Function (Cont 1)
[image: image21.png]Yi1

b,

n, -
V= n vy
vy Vi

IV = Initial value
CV = chaining variable

Y; = ithinput block

f = compression algorithm
L= number of input blocks
n = length of hash code

b = length of input block

Figure 11.10 General Structure of Secure Hash Code

We see that it resembles DAA (Figure 11.6).

PAGE
13

_1165333957.unknown

_1165334259.unknown

_1165334306.unknown

_1165334425.unknown

_1165334046.unknown

_1165333209.unknown

_1165333685.unknown

_1165332628.unknown

