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ABSTRACT The Newton adaptive filtering algorithm in its original form is computationally very complex
as it requires inversion of the input-signal autocorrelation matrix at every time step. Also, it may suffer from
stability problems due to the inversion of the input-signal autocorrelation matrix. In this paper, we propose
to replace the inverse of the input-signal autocorrelation matrix by an approximate one, assuming that the
input-signal autocorrelation matrix is Toeplitz. This assumption would help us in replacing the update of
the inverse of the autocorrelation matrix by the update of the autocorrelation matrix itself, and performing
the multiplication of R−1x in the update equation by using the Fourier transform. This would increase the
stability of the algorithm, in one hand, and decrease its computational complexity, on the other hand. Since
the objective of the paper is to enhance the stability of the Newton algorithm, the performance of the proposed
algorithm is compared to those of the Newton and the improved quasi-Newton (QN) algorithms in noise
cancellation and system identification settings.

INDEX TERMS Impulsive noise, Newton method, noise cancellation, system identification.

I. INTRODUCTION
The least-mean-squares (LMS) algorithm is used in many
applications that vary from single-input/single-output (SISO)
to multiple-input/multiple-output (MIMO) systems [1]–[9].
However, when the input signal is highly correlated or ban-
dlimited, the LMS algorithm as well as other algorithms of
the steepest-descent family converge slowly and the capa-
bility of such algorithms in tracking nonstationarities dete-
riorates. In such situations, more sophisticated algorithms
such as Newton based algorithms provide improved perfor-
mance [10]–[13]. Unfortunately, these algorithms, which are
usually computationally very complex, suffer from stability
problems since they require the inverse of the input-signal
autocorrelation matrix in the weight vector update. And
sometimes they have low convergence rate. Quasi-Newton
algorithms avoid the inversion of the autocorrelation matrix
by directly updating the inverse of the autocorrelation matrix,
but they still have high computational complexity. In [14],
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the authors propose an improved quasi-Newton (QN) algo-
rithm that performs data-selective adaptation whereby the
weight vector and the inverse of the input-signal autocorre-
lation matrix are updated only when the apriori-error exceeds
a prespecified error bound. The authors have increased the
stability and the convergence rate of the known QN algo-
rithm and significantly reduce its computational complex-
ity. However, the algorithm still requires the update of the
inverse autocorrelation matrix when the apriori-error exceeds
the prespecified error bound which, in turn, may cause sta-
bility problems [14]. Also, its performance may deteriorate
depending on the problem setting.

Several methods have been developed for efficient inver-
sion of Toeplitz matrices [15]–[21]. An important class of
these methods are based on the Gohberg-Semencul formula
[15], [17]. This formula, derived from Trench’s method,
involves the construction of the inverse from a low number
of its columns and the entries of the Toeplitz matrix itself.
The inversion formula developed in [21], which is one of
the more recent of such formulae, reconstructs the inverse
using only the first column of the inverse and entries of
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the original matrix. When this inversion technique is closely
examined it is noticed that it requires additional computations
for constructing the matrices of the formula, which then
can be efficiently multiplied using the fast-Fourier transform
(FFT). First of all, the first column of the inverse must
be computed using the standard procedure for calculating
matrix inverses. Then, the equation Tx = y, where T is the
Toeplitz matrix and y is a vector containing elements of T ,
must be solved for x. The vector x is then used to construct
two of the matrices of the formula. Actually, the solution
for x is achieved by using the inverse formula itself, where
x is solved by back substitution. In [21] it is stated that
the number of real operations for calculating the inverse
is 16nlog2n where nis the matrix dimension. However, this
count does not include the above-mentioned additional com-
putations. Therefore, compared with such fast inversion tech-
niques, the proposed approximate inversionmethod hasmuch
lower complexity. It is worth noting that, as far as application
to the Newton adaptive filter is concerned, the exact inverse
of the autocorrelation matrix is not essential. As will be
discussed in Section V, it is sufficient that the eigenvalues of
the product of the autocorrelation matrix with its approximate
inverse lie within the unit disc. If any eigenvalue is near
the boundary, the step size of the Newton algorithm can be
adjusted to stabilize the iterations.

Approximate inverses of Toeplitz matrices have been
considered as preconditioners in the numerical solution of
Toeplitz systems of equations Tx = y, usually based on the
conjugate gradient (CG) algorithm [22]–[25]. The precon-
ditioning matrix M is chosen such that the preconditioned
matrix MT has eigenvalues clustered around unity, enabling
fast convergence of the CG algorithm. Results concerning
inverses of infinite-dimensional Toeplitz matrices are pre-
sented in the literature [26], where the inverse of a Toeplitz
matrix generated by a symbol is related to the Toeplitz
matrix generated by the inverse of the symbol (plus product
of Hankel matrices), where the symbol is positive definite.
Approximate inverses of finite-dimensional Toeplitz matrices
generated from the inverse of the symbol of the matrix have
been proposed as preconditioners in [27]. However, this paper
does not attempt to derive results indicating the degree to
which the inverse generated in this manner approximates
the true inverse, but focuses on showing that the product
of the approximate inverse with the matrix has eigenvalues
clustered around unity. In particular, no explicit result is given
linking the properties of the symbol of the Toeplitz matrix
to the distribution of the eigenvalues of the preconditioned
matrix MT . This is crucial for the application here, since the
eigenvalues must be contained in the unit disc for stability
of the Newton algorithm. The main contribution of this work
is the derivation of an explicit expression that approximately
relates the eigenvalues to the symbol of the Toeplitz matrix
(truncated power spectral density (PSD) of the input signal).
It is shown that the inverse generated from the inverse of the
sampled PSD is a reasonably good approximation for the true
inverse in a wide dynamic range of the PSD.

In this paper, we provide a detailed description of our
algorithm proposed in [28] which is mainly a new approx-
imate inverse quasi-Newton (AIN) algorithm that replaces
the inverse of the input-signal autocorrelation matrix by an
approximate one, assuming that the input-signal’s instanta-
neous autocorrelation matrix is Toeplitz. This assumption
replaces the update of the inverse autocorrelation matrix by
the update of the autocorrelation matrix itself, and allows
performing the multiplication of R−1x in the update equation
by using the Fourier transform. This increases the stability of
the algorithm, on one hand, and decreases its computational
complexity, on the other hand. The number of computations
needed in the update equation for one iteration becomesmuch
less than that needed in the improved QN algorithm when the
filter length is moderately large. Our aim, here, is to enhance
the stability of the Newton algorithm, hence the performance
of the proposed algorithm is compared to those of the Newton
and the improved QN algorithms under different settings.
Also, convergence analysis of the algorithm in themean sense
is provided.

The paper is organized as follows: In Section II, the approx-
imate inversion of the Toeplitz matrices is analyzed in detail.
In Section III, the Newton adaptive filter is reformulated to
use a fixed step-size, instead of the variable step-size in the
original Newton, and the inverse of the instantaneous estimate
of the autocorrelation matrix R−1(k) instead of R−1(k − 1).
In Section IV, analysis of the convergence in the mean of
Newton is presented. In Section V, the mathematical model
of the proposed AIN algorithm is presented. In Section VI,
implementation of the approximate inversion technique is
described. In Section VII, simulation results are provided and
discussed. Finally, the conclusions are drawn.

II. APPROXIMATE INVERSION OF THE TOEPLITZ
MATRICES
Given a Toeplitz autocorrelation matrix (R) corresponding to
the autocorrelation sequence (ACS) of a stationary process:

r(n) = E
{
x(k)x∗(k + n)

}
, n = −(N − 1), . . . , (N − 1)

(1)

where r(−n) = r∗(n). The matrix R can be written as:
r(0) r(−1) . . . r (−(N − 1))
r(1) r(0) . . . r (−(N − 2))
r(2) r(1) . . . r (−(N − 3))
...

...
. . .

...

r(N − 1) r(N − 2) . . . r(0)

 (2)

The power spectrum of the signal corresponding to the trun-
cated ACS is,

S(ω) =
N−1∑

n=−(N−1)

r(n)e−jnω. (3)
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The question is whether the inverse of R can be approxi-
mated using the inverse power spectrum defined as:

Q(ω) =
1

S(ω)
=

N−1∑
n=−(N−1)

q(n)e−jnω. (4)

Let P = Toep {q(n)} generated by the sequence {q(n);
n = −(N − 1), . . . , (N − 1)}.

It can be asserted that P is an approximation for the inverse
of R if the eigenvalues of (I − PR) lie on a disc with radius
ε < 1: Dε(λ) = {λ; |λ| < ε}. Note that as ε → 0, P
approaches the exact inverse R−1, and the smaller ε is the
better the approximation. Now, to establish the conditions
under which this approximation is valid, we consider the
eigenvalues of PR,

(PR) x = λx, (5)

where x = [x(0) x(1) . . . x(N − 1)]T is the eigenvector cor-
responding to the eigenvalue λ. Let y = Rx = [y(0) y(1) . . .
y(N − 1)]T , then, the elements of this vector are given by:

y(n) =
N−1∑
m=0

r(n− m)x(m), n = 0, . . . , (N − 1) (6)

Define an extended sequence as:

ỹ(n) =
N−1∑
m=0

r(n− m)x(m), −∞ < n <∞ (7)

where r(k) = 0 if k 6∈ [−(N − 1), (N − 1)]. Equation (7)
is in the form of a convolution sum. Taking the Fourier
transform (FT) gives,

Ỹ (ω) = S(ω)X (ω). (8)

Then, the original sequence {y(0), . . . , y(N − 1)} can be
related to the extended sequence as

y(k) = ỹ(k)a(k), (9)

where a(k) is:

a(k) =

{
1, k = 0, . . . , N− 1
0, otherwise.

(10)

Taking the Fourier transform (FT) of (9),

Y (ω) =
1
2π

2π∫
0

Ỹ (ω1)A(ω − ω1)dω1, (11)

where A(ω) is the FT of the sequence a(k)

A(ω) =
1− e−jNω

1− e−jω
. (12)

The FT of y(k) then becomes,

Y (ω) =
1
2π

2π∫
0

S(ω1)X (ω1)
1− e−jN (ω−ω1)

1− e−j(ω−ω1)
dω1. (13)

Consider also the product Py = z = λx. Since P is also
Toeplitz, the FT of z can be written as:

Z (ω) =
1
2π

2π∫
0

Q(ω2)Y (ω2)A(ω − ω2)dω2, (14)

where Q(ω) is the FT of the sequence q(k). Substituting (13)
in (14) we get

λX (ω) =
1

(2π )2

2π∫
0

S(ω1)X (ω1)
{ 2π∫

0

Q(ω2)

×A(ω2 − ω1)A(ω − ω2)dω2

}
dω1. (15)

Equation (15) is an integral equation relating the Fourier
transforms of the generating sequences r(n) and q(n) to the
eigenvalues of the product PR. Let us consider the trivial case
where the signal x(k) is white:

S(ω1) = r(0) ⇒ Q(ω2) =
1
r(0)
= q(0). (16)

Then,

λX (ω) =
1

(2π )2

2π∫
0

X (ω1)
{ 2π∫

0

A(ω2 − ω1)

×A(ω − ω2)dω2

}
dω1, (17)

simplifying (17)

2π∫
0

A(ω2 − ω1)A(ω − ω2)dω2

=

N−1∑
n=0

N−1∑
m=0

2π∫
0

e−jn(ω2−ω1)e−jm(ω−ω2)dω2

=

N−1∑
n=0

N−1∑
m=0

ejnω1e−jmω
2π∫
0

e−j(n−m)ω2dω2

= 2π
N−1∑
n=0

N−1∑
m=0

ejnω1e−jmωδ(n− m)

= 2π
N−1∑
n=0

e−jn(ω−ω1)

= 2πA(ω − ω1), (18)

where δ(k) is the Kronecker delta. Substituting (18) in (15)
gives

λX (ω) =
1
2π

2π∫
0

X (ω1)A(ω − ω1)dω1

= X (ω) ⇒ λ = 1, (19)
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which implies that all the eigenvalues of PR are equal to 1,
as expected.

Equation (15) can be discretized using the interpolation
relation for X (ω1) in (20)

λX (ω1) =
1
N

N−1∑
k=0

X (αk )A(ω1 − αk ), (20)

where αk = 2πk
N , k = 0, . . . , N−1. Substituting (20) in (15)

and setting ω = αl = 2π l
N , l = 0, . . . , N − 1 yields

λX (αl) =
N−1∑
k=0

clkX (αk ), (21)

where

clk =
1

(2π )2N

2π∫
0

S(ω1)A(ω1 − αk )

×


2π∫
0

Q(ω2)A(ω2 − ω1)A(αl − ω2)dω2

 dω1. (22)

Letting X = [X (α0) . . .X (αN−1)]T and C =

[clk ]l,k=0,...,N−1, equation (22) can be written as

λX = CX

Therefore, the original eigenvalue equation has been trans-
formed to one in the transform domain involving the DFT
of the eigenvector x. The eigenvalues of PR are the same
as those of the matrix C . An advantage of the transform
domain equation is that the eigenvalues are now those of
a matrix having elements expressed in terms of the power
spectral densities S(ω) and Q(ω). Hence, the eigenvalues can
be related to the dynamic range of S(ω).

The integrals in the R.H.S. of (22) can be discretized using
interpolation equations (see Appendix) for S(ω1) and Q(ω2)
as described in the following proposition.
Proposition 1: Equation (22) can be rewritten in the fol-

lowing form:

clk =
Ns−1∑
i=0

Ns−1∑
j=0

Q(ui)S(uj)η(ui, uj, αl, αk ),

l, k = 0, . . . , N − 1 (23)

where Ns = 2N − 1, and

η(ui, uj, αl, αk ) =
1

NN 2
s
ej

1
2 (N−1)(αk−αl )

FN (uj − ui)FN (uj − αk )FN (ui − αl), (24)

and

FN (ω) =
sin
[Nω

2

]
sin
[
ω
2

] .
Proof: The proof is given in Appendix.

Corollary: When S(ω) is constant (white signal case),
it can be shown using (18) that clk = 0 for l 6= k and clk = 1
for l = k . This further implies that

Ns−1∑
i=0

Ns−1∑
j=0

η(ui, uj, αl, αk ) =

{
1, l = k
0, l 6= k.

(25)

which corresponds to the result λ = 1 for the white signal
case.

Equation (25) means that if the dynamic range of S(ω) is
not large, the eigenvalues of PR can be approximated by the
diagonal elements cll . A formal proof of this statement seems
extremely difficult. However, a heuristic argument may be
used to support it. Consider the function FN (ω) in (24) which
has an impulse-like shape for large N . Hence, for instance,
the term FN (uj − ui) has significant values when uj is very
close to ui. Evidently, as a result of the product of the three
terms, the kernel η(ui, uj, αl, αk ) will have significant mag-
nitudes only when αl = αk . Therefore, letting Q(ui) = 1

S(ui)
we get

λl ∼=

Ns−1∑
i=0

Ns−1∑
j=0

S(uj)
S(ui)

η0(ui, uj, αl), l = 0, . . . , N − 1

(26)

where η0(ui, uj, αl) = η(ui, uj, αl, αl).
The eigenvalues of PR can now be related to the dynamic

range of the FT S(ω) under a simplifying assumption by the
following Lemma.
Lemma: If S(ω) is smooth enough with bounded low order

derivatives, the eigenvalues in (26) can be written as

λl ∼= 1+
(
S ′(αl)
S(αl)

)2

γN (αl) (27)

where

γN (αl) =
Ns−1∑
i=0

Ns−1∑
j=0

(ui − αl)(ui − uj)η0(ui, uj, αl)

l = 0, . . . ,N − 1 (28)

Proof: Consider the truncated Taylor series expansions
of S(ω) and Q(ω) = 1

S(ω) around αl evaluated at ui and uj,

S(uj) ∼= S(αl)+ S ′(αl)(uj − αl)

+
1
2
S ′′(αl)(uj − αl)2 (29)

Q(ui) ∼= Q(αl)+ Q′(αl)(ui − αl)

+
1
2
Q′′(αl)(ui − αl)2 (30)

where φ′(u) and φ′′(u) denote the first and second derivatives
of φ(u) with respect to u, respectively. Then, (26) can be
written as

λl ∼= Q(αl)S(αl)+
[
Q(αl)S ′(αl)+ Q′(αl)S(αl)

]
Ns−1∑
i=0

Ns−1∑
j=0

(ui − αl)η0(ui, uj, αl)
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+
[
Q(αl)S ′′(αl)+ Q′′(αl)S(αl)

]
Ns−1∑
i=0

Ns−1∑
j=0

(ui − αl)2η0(ui, uj, αl)

+Q′(αl)S ′(αl)
Ns−1∑
i=0

Ns−1∑
j=0

(ui − αl)

(ui − uj)η0(ui, uj, αl) (31)

where third order terms are omitted, and symmetry of the
summation terms with respect to ui and uj has been utilized.
Now, making use of the fact that Q(ω) = 1

S(ω) , the following
can be shown to hold

Q(αl)S ′(αl)+ Q′(αl)S(αl) = 0 (32)
1
2

[
Q(αl)S ′′(αl)+ Q′′(αl)S(αl)

]
= −Q′(αl)S ′(αl)

=

(
S ′(αl)
S(αl)

)2

(33)

using (32) and (33) in (31) and after simplification, (31)
reduces to (27).

In (27) the factors γN (αl), which depend only on N , take
small values (O(1/N )) when αl is away from 0 or 2π , but
increase abruptly to large values as αl → 0, 2π . In the latter
case, since S ′(0) = S ′(2π ) = 0, S ′(αl) may be expected to
be very small in the vicinity of 0 or 2π if S(ω) is sufficiently
smooth, thus making the second term in (27)) small enough.
Therefore, if the maximum of S ′(αl )

S(αl )
occurs at a frequency

sufficiently away from 0 or 2π , then the eigenvalues are likely
to be clustered around unity if

max
αl∈[0,π ]

∣∣∣∣S ′(αl)S(αl)

∣∣∣∣� O
(√

N
)

(34)

The following proposition gives an upper bound for the
eigenvalues in terms of the dynamic range of the PSD S(ω)
for the special case where S(ω) has only extremum in (0, 2π ).
Proposition 2: For the case where S(ω) has only one

extremum in [0, 2π ] at the frequency uk such that S(uk ) =
Smax , S(0) = Smin (see Fig. 1), and that

∣∣∣ S ′(αl )S(αl )

∣∣∣ attains its
maximum at a frequency sufficiently away from 0 or 2π ,
the eigenvalues approximately satisfy

|λl − 1| ≤
(
2 ln ρ
uk

)2

γN (αm) (35)

where ρ = Smax
Smin

and αm, m ∈ [0,N − 1] is the frequency
nearest um. Note that uk in (35) is by definition the difference
in the frequencies at which Smax and Smin occur, hence cannot
be equal to zero.
Proof : Consider the first two terms of the Taylor series

expansion of S(uj) about S(ui) in (23)

|λl − 1| ≤ γN (αl) max
αl∈[0,π ]

(
S ′(αl)
S(αl)

)2

(36)

FIGURE 1. The FT S(u) with one extremum in (0, π).

in (37) the fact that γN (αl) is almost constant when αl is away
from 0 or 2π , is used. Letting h(ω) = S ′(ω)

S(ω) , then

uk∫
0

h(ω)dω =

Smax∫
Smin

dS(ω)
S(ω)

= ln
[
Smax
Smin

]
= ln ρ (37)

If S(ω) is smooth enough, it may be assumed that the max-
imum (hmax) of h(ω) occurs in the range (0, uk ). Letting,
h(um) = hmax and using a piecewise linear approximation
for h(ω) in [0, uk ] (i.e. from 0 to um and from um to uk ),
the integral in (37) may be approximated as

uk∫
0

h(ω)dω ≈
1
2
ukhmax (38)

Solving for hmax from (37) and (38) and substituting in (33)
for the maximum, (32) is obtained.

To test the accuracies of (27) and (35), we consider a
banded matrix, where r(0) = 1 and r(±n) = βn for n = 1, 2.
This matrix has been chosen, because the PSD S(ω) has
one extremum in (0, π), which was the assumption made in
deriving (35), and is sufficiently smooth. The PSD is given

by S(ω) = 1 + 2β cos(ω) + 2β2 cos(2ω) for β ≤
√

3
8

and uk ' cos−1(−0.25β−1). Fig. 2 shows the computed
and theoretical maximum eigenvalues of (I − PR) versus
ρ = Smax

Smin
. The computed eigenvalues are calculated by

directly finding the approximate inverseP, and the theoretical
ones are calculated using (27). The upper bounds calculated
using (35) are also displayed on Fig. 2. These computations
indicate that the analytical results are sufficiently accurate
under the conditions assumed in deriving them.

III. NEWTON ADAPTIVE ALGORITHM
In this section, an overview of the Newton adaptive filter is
provided. Consider the Wiener-Hopf equation at time-step k ,

R(k)w(k) = p(k) (39)
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FIGURE 2. Theoretical and computed maximum eigenvalues of (I − PR)
versus ρ = Smax

Smin
.

It should be highlighted that it is possible to augment the
Wiener-Hopf equation, in (39), as follows

N∑
m=1

rxx(n−m)w(m)=p(n), n=1, . . . ,M , M>N (40)

In this case the autocorrelation matrix would beM × N , and
would have full column rank. The equations would have a
least-squares solution and the inverse of the autocorrelation
matrix would be replaced by the Moore-Penrose pseudo-
inverse. However, approximation of the inverse based on the
power spectrum would not be possible.

In (39), R(k) is the instantaneous estimate of the autocor-
relation matrix, w(k) is the filter weights vector and p(k) is
the instantaneous estimate of the cross-correlation between
the desired signal and the input vector. The correlations are
estimated recursively as

R(k) = βR(k − 1)+ x(k)xT (k) (41)

p(k) = βp(k − 1)+ d(k)x(k) (42)

where β < 1 is the forgetting factor and is usually chosen
very close to unity. Substituting (41) and (42) in (39) and
letting 1w(k) = w(k)− w(k − 1) leads to[
βR(k − 1)+ x(k)xT (k)

]
1w(k)

= x(k)
[
d(k)− xT (k)w(k − 1)

]
(43)

which simplifies to

R(k)1w(k) = x(k)e(k) (44)

where e(k) is the a-priori estimation error. The update equa-
tion for the weight vector is obtained as

w(k) = w(k − 1)+ µR−1(k)x(k)e(k) (45)

where µ is a step-size which may be required to stabilize the
recursion in the update equation. Equation (45) is known as
the Newton adaptive algorithm [29].

IV. ANALYSIS OF CONVERGENCE IN THE MEAN
The update equation in (45) can be rewritten as

w(k) =
[
I − µR−1(k)x(k)xT (k)

]
w(k − 1)

+µR−1(k)x(k)d(k) (46)

Equations (41) and (42) can be solved as

R(k) =
k∑
i=0

βk−ix(i)xT (i) (47)

p(k) =
k∑
i=0

βk−ix(i)d(i) (48)

Let

x(k)xT (k) = Rxx +1k , x(k)d(k) = pxd + δk (49)

where Rxx and pxd are the theoretical autocorrelation
matrix and cross-correlation vector, respectively, so that
E {1k} = 0,E {δk} = 0. Substituting (49) in (48) and (47)

R(k) =
k∑
i=0

βk−i (Rxx +1k) =
1− βk+1

1− β
Rxx + 1̃k

= αkRxx + 1̃k (50)

p(k) =
k∑
i=0

βk−i (pxd + δk) =
1− βk+1

1− β
pxd + δ̃k

= αkpxd + δ̃k (51)

where

1̃k =

k∑
i=0

βk−i1k , δ̃k =

k∑
i=0

βk−iδk

Substituting (50) and (51) in (46) yields, after some manipu-
lation,

w(k) =
[
I − µα−1k

(
I + α−1k R−1xx 1̃k

)−1 (
I + R−1xx 1k

)]
×w(k − 1)

+µα−1k

(
I + α−1k R−1xx 1̃k

)−1
R−1xx x(k)d(k) (52)

The term
(
I + α−1k R−1xx 1̃k

)−1
can be approximated as(

I + α−1k R−1xx 1̃k

)−1
' I − α−1k R−1xx 1̃k (53)

where the first two terms in the expansion (I + A)−1 = I −
A+A2− . . . have been used, which is valid if the spectrum of
A is contained within the unit disc (|σ (A)| < 1). The approxi-
mation is good if the eigenvalues of A have magnitudes much
less than unity. Note that if Rxx is a proper autocorrelation
matrix, R−1xx will be a well-behaved matrix. The matrix 1̃k is
a low-pass-filtered version of the fluctuation 1k with a very
small cut-off frequency if β is close to unity. Therefore, since
E {1k} = 0 it may be expected that the elements of 1̃k would
be small enough, so that the eigenvalues of R−1xx 1k would be
sufficiently small.
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Now, substituting (53) in (52) and neglecting second order
terms after expanding the matrix product, we get

w(k) =
[
I − µα−1k

(
I + R−1xx

(
1k − α

−1
k 1̃k

))]
w(k − 1)+ µα−1k

(
I − α−1k R−1xx 1̃k

)
R−1xx x(k)d(k) (54)

Taking expectation and after invoking the independence
assumption [10], we get

w̄(k) =
[
1− µα−1k

]
w̄(k − 1)+ µα−1k R−1xx pxd (55)

where w̄(k) is the expected value of the tap-weight vector.
It can be deduced that, for uniform convergence we must

have 0 < µ < sup
k≥0

(αk ) = 1. It can easily be verified that as

k → ∞ the mean weight vector converges to the optimum
wopt = R−1xx pxd .

V. A NEW NEWTON ADAPTIVE ALGORITHM
Newton adaptive algorithm in its original form is compu-
tationally very complex as it requires the inversion of the
autocorrelation matrix at every time step. We propose to
replace the inverse by an approximate one, obtained from the
Toeplitz approximation of R(k), as described in section II.
It was shown that the approximate inverse satisfies

P(k)R(k) = U (k) (56)

where U (k) is a matrix having eigenvalues concentrated
around unity when the eigenvalue spread of R(k) is less than
a certain value (see (35)). The weight update equation of the
proposed algorithm would be

w(k) = w(k − 1)+ µP(k)x(k)e(k) (57)

which, by making use of (56), can be written as

w(k) = w(k − 1)+ µU (k)R−1(k)x(k)e(k) (58)

Following a similar procedure for the original Newton algo-
rithm we get

w̄(k) =
[
I − µα−1U (k)

]
w̄(k − 1)+ µα−1U (k)wopt (59)

Then, for convergence, it is sufficient that 0 < µ < 1
λmax (U (k))

where λmax (U (k)) is that eigenvalue of U (k) having the
maximum magnitude. Letting λmax (U (k)) = 1 + ε, where
ε depends on the eigenvalue spread of R(k). (see Fig. 2) then
for stability it is sufficient to choose µ < 1

(1+ε) .

VI. IMPLEMENTATION OF THE APPROXIMATE
INVERSION TECHNIQUE
In this section, implementing the multiplication of
R−1(k)x(k), or equivalently P(k)x(k), using the DFT method
is described in detail. As shown in section II, The main idea
is to obtain an approximate inversion of R(k) (i.e., P(k))
and apply transform techniques to carry out the multiplica-
tion P(k)x(k) in the update equation. Now, considering the

sequence {q(n); n = −(N − 1), . . . , (N − 1)} given in (4),
the symmetric sequence gq(k) can be constructed as:

gq(k)=

{
qi, 0 ≤ i ≤ (N − 1)
q∗i , −(N − 1) ≤ i < 0

(60)

The nth element of the vector pf (k) = P(k)x(k) can be written
as:

pf ,n(k) =
N∑
m=1

qn,mxm−1(k), n = 1, 2, . . . ,N . (61)

Rewriting (61) in terms of the sequence in (60) gives

pf ,n(k) =
N−1∑
m=0

gn−m−1xm(k), n = 1, 2, . . . ,N , (62)

Equation (62) represents the convolution sum. Now, taking
(2N − 1)-point DFT of both sides of (62) at time k

Pfe(l) = G(l)Xe(l), l = 1, 2, . . . , 2N − 1, (63)

where Pfe(l) is the DFT of the zero-padded sequence
{pfe,n(k); n = 1, 2, . . . , 2N − 1}:

pfe,n(k)=

{
pf ,n(k), n = 1, 2, . . . ,N
0, n = N + 1, . . . , 2N − 1,

(64)

and Xe(l) is the DFT of xe(k) = [x(k) 0
¯
] where 0

¯
is an

(N − 1)-dimensional zero vector. The sequence {pf ,n(k);
n = 1, 2, . . . ,N } can now be recovered from the inverse DFT
of Pfe(l).

By applying this method, the computational complexity of
the Newton algorithm will be significantly reduced as shown
in Table 1.

TABLE 1. Computational complexity of AIN-LMS, Newton-LMS and
improved QN-LMS algorithms.

VII. SIMULATION RESULTS
To test the performance of the proposed algorithm, we com-
pare its performance to the original Newton and the
improved QN [14] algorithms in additive white Gaussian
noise (AWGN) and additive white impulsive noise (AWIN)
[30], [31] for noise cancellation and system identification
settings. In all the experiments, the input signal is generated
using a first-order autoregressive process (AR(1)) with ρ =
0.6 (x(k) = 0.6x(k − 1) + vo(k)) where vo(k) is assumed
to be a white Gaussian process with zero mean and variance
(σ 2
vo = 0.15). All the algorithms were implemented with

the following parameters: For the proposed AIN and Newton
algorithms: β = 1 and µ = 1. For the improved QN
algorithm: γ =

√
6σ 2

v and ζ = 10−3. All the experiments
were implemented with 1000Monte-Carlo independent runs.
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A. ADAPTIVE NOISE CANCELLATION
Some adaptive applications such as noise cancellation require
large filter length (in this part we use filter length of
N = 30 taps). In such applications, the computational com-
plexity of the proposed algorithm becomes more prominent
over the aforementioned algorithms. A block diagram of a
noise cancellation setting is shown in Fig. 3.

FIGURE 3. A Block diagram of the adaptive noise cancellation model.

First, an AWGN process is added to the input signal
and the steady-state mean-square-errors (mse’s) of all the
methods were equated to compare their convergence rates.
Fig. 4 shows that the proposed algorithm converges to the
same steady-state mse (mse= −13.5dB) of the Newton and
improved QN algorithms. Even though the improved QN
algorithm starts with a faster convergence rate (due to the
initialization of the algorithm), it slows down to converge to
the same mse with the same rate as the other algorithms (all
the algorithms converge at approximately 2500 iterations).
The advantage of the proposed algorithm over the Newton
and improvedQN algorithms, here, appears in terms of reduc-
tion in the computational complexity as shown in Table 1.

FIGURE 4. Ensemble mse for AIN, Improved QN and Newton algorithms
in AWGN (Noise Cancellation).

In the second part of this experiment, we compare the
performance of the algorithms in impulsive noise. We use an
AWIN process with zero mean and variance (σ 2

v = 4×10−4).
The impulsive noise process generated by the probability
density function [30]: f = (1− ε)G

(
0, σ 2

n
)
+ εG

(
0, κσ 2

n
)

with variance σ 2
f given as: σ 2

f = (1− ε) σ
2
n + εκσ

2
n , where

G
(
0, σ 2

n
)
is a Gaussian probability density function with zero

mean and variance σ 2
n that represents the nominal background

noise. G
(
0, κσ 2

n
)
represents the impulsive component of the

noise model, where ε is the probability and κ ≥ 1 is the
strength of the impulsive components, respectively. Thewhite
impulsive noise process is generated with the parameters:
ε = 0.2, κ = 100 and σ 2

n = 4 × 10−4. Fig. 5 shows that
the proposed AIN algorithm converges to the same mse as
that of the Newton algorithm (mse= −20dB) with the same
convergence rate (both algorithms converge at approximately
2500 iterations) with lower computational complexity for
the AIN algorithm. The improved QN algorithm converges
to higher mse than the other algorithms (mse= −17dB).
It should be mentioned that, the mse of the improved QN
cannot go below certain levels and this could be due to its
structure that provides a fast convergence behavior at the
beginning.

FIGURE 5. Ensemble mse for AIN, Improved QN and Newton algorithms
in AWIN (Noise Cancellation).

B. ADAPTIVE SYSTEM IDENTIFICATION
To show the robustness of the proposed algorithm due to
the change in the experimental setting, we now compare the
performance of the aforementioned algorithms in a system
identification setting. A block diagram of a system identifi-
cation setting is shown in Fig. 6. Again the input signal is

FIGURE 6. A Block diagram of the adaptive system identification model.
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generated using the same AR(1) process used in the previous
section with the same parameters. The unknown system was
assumed to be a low-pass filter with length of N = 12 taps
and a frequency magnitude shown in Fig. 7.

FIGURE 7. The magnitude response of the unknown system.

In the first part of this experiment, an AWGN process is
added to the input signal and the steady-state mse’s of all the
methods were equated to compare their convergence rates.
Fig. 8 shows that the proposed algorithm converges to the
same steady-state mse (mse = −20dB) of the Newton and
improved QN algorithms at the same rate (the AIN, New-
ton and improved QN algorithms converge at approximately
600 iterations).

FIGURE 8. Ensemble mse for AIN, Improved QN and Newton algorithms
in AWGN (System Identification).

In the second part, the convergence rates of all the methods
were equated and their steady-state mse’s were compared.
The noise again here is assumed to be an AWINwith the same
parameters in the second experiment of Section VII-A. Fig. 9
shows that the proposed AIN algorithm converges to the same
mse as that of the Newton algorithm (mse=−20dB) with the
same convergence rate (but lower computational complexity).
However, the improved QN algorithm converges to a higher
mse than the other algorithms (mse = −17.5dB).

FIGURE 9. Ensemble mse for AIN, Improved QN and Newton algorithms
in AWIN (System Identification).

VIII. CONCLUSION
In this paper, a new approximate inverse quasi-Newton (AIN)
algorithm is proposed. The proposed AIN algorithm replaces
the inverse of the input-signal autocorrelation matrix by an
approximate one, assuming that the input-signal autocor-
relation matrix is Toeplitz. Analysis of the proposed AIN
algorithm is also provided. The performance of the pro-
posed AIN algorithm is compared to those of the Newton
and the improved QN algorithms in noise cancellation and
system identification settings. The proposed AIN algorithm
has lower computational complexity than that of the Newton
algorithm without affecting the performance. The computa-
tional complexity of the proposed AIN algorithm is less than
that of the improved QN algorithm when the filter length
is relatively large with much better performance in terms of
mse if the noise is impulsive (this could be due to the FFT
process which helps in suppressing the impulsive components
(outliers) of the noise process).

APPENDIX
The interpolation equations for S(ω1) and Q(ω2) are

S(ω1) =
1
Ns

Ns−1∑
j=0

S(uj)Ãs(ω1 − uj),

uj =
2π j
Ns
, j = 0, . . . , Ns − 1 (65)

Q(ω2) =
1
Ns

Ns−1∑
i=0

Q(ui)Ãs(ω2 − ui),

ui =
2π i
Ns
, i = 0, . . . , Ns − 1 (66)

In (65) and (66) Ns = 2N − 1 and

Ãs(ω) =
N−1∑

n=−N+1

ejnω (67)

It should be noted that S(ω) and Q(ω) are the DFTs of
sequences defined for n = −N + 1, . . . , N − 1. Hence
the interpolation function should be modified accordingly as
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in (67). Substitution of (66) in the inner integral (wrt ω2)
in (22) yields
2π∫
0

Q(ω2)A(ω2 − ω1)A(αl − ω2)dω2 =
1
Ns

Ns−1∑
i=0

Q(ui)

2π∫
0

Ãs(ω2 − ui)A(ω2 − ω1)A(αl − ω2)dω2 (68)

The integral on the R.H.S. of (68) can be evaluated by
using (12) and (67) as

γ1(αl, ui, ω1) =

2π∫
0

Ãs(ω2 − ui)A(ω2 − ω1)A(αl − ω2)dω2

=

2π∫
0

N−1∑
n=−N+1

N−1∑
m=0

N−1∑
k=0

e−jn(ω2−ui)e−jm(αl−ω2)e−jk(ω2−ω1)dω2

=

N−1∑
n=−N+1

N−1∑
m=0

N−1∑
k=0

ejnuie−jmαl ejkω1
2π∫
0

e−j(n−m+k)ω2dω2

= 2π
N−1∑

n=−N+1

N−1∑
m=0

N−1∑
k=0

ejnuie−jmαl ejkω1δ(n− m+ k)

= 2π
N−1∑

n=−N+1

∑
m∈I0(n)

ejnuie−jmαl ej(m−n)ω1 (69)

where

I0(n)=

{
[n, . . . ,N − 1], n ≥ 0
[0, . . . ,N − 1+ n], n < 0

(70)

Substitution of (69) in (22) and rearranging gives

clk =
1

(2π )2NNs

Ns−1∑
i=0

Q(ui)

2π∫
0

S(ω1)A(ω1 − αk )γ1(αl, ui, ω1)dω1 (71)

By using (65), the integral in (71) can be written as

γ2(ui, αl, αk ) =

2π∫
0

S(ω1)A(ω1 − αk )γ1(αl, ui, ω1)dω1

=
1
Ns

Ns−1∑
j=0

S(uj)

2π∫
0

Ãs(ω1 − uj)

×A(ω1 − αk )γ1(αl, ui, ω1)dω1 (72)

Therefore, the η coefficients in (23) become,

η(ui, uj, αl, αk ) =
1

(2π )2NN 2
s

2π∫
0

Ãs(ω1 − uj)

×A(ω1 − αk )γ1(αl, ui, ω1)dω1 (73)

Using (69), the integral in (73) becomes

2π
N−1∑

ν=−N+1

ejνuj
N−1∑
µ=0

ejµαk
N−1∑

n=−N+1

ejnuj

∑
m∈I0(n)

e−jmαl
2π∫
0

e−j(ν+µ+n−m)ω1dω1

= (2π )2
N−1∑

ν=−N+1

ejνuj
N−1∑
µ=0

ejµαk
N−1∑

n=−N+1

ejnuj

∑
m∈I0(n)

e−jmαl δ(ν + µ+ n− m) (74)

The last two summations in (74) can be written as
N−1∑

n=−N+1

ejnui
∑

m∈I0(n)

e−jmαl δ(ν + µ+ n− m)

=

∑
n∈I1(ν+µ)

e−jnuie−j(ν+µ+n)αl (75)

where I1(ν + µ) = [−(ν + µ), . . . ,N − 1 − (ν + µ)] and
ν + µ ∈ [0, . . . ,N − 1]. Substitution in (74) results in

η(ui, uj, αl, αk ) =
1

NN 2
s

N−1∑
ν=−N+1

∑
µ∈I2(ν)∑

n∈I1(ν+µ)

ejν(uj−αl )ejµ(αk−αl )ejn(ui−αl ) (76)

where

I2(ν)=!

{
[0, . . . ,N − 1− ν], ν ≥ 0
[−ν, . . . ,N − 1], ν < 0

(77)

The summation in (76) can be readily performed and sim-
plified to yield (24)
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