13-52 An insulated rigid tank is divided into two compartments by a partition. One compartment contains 2.5 kmol of
CO_{2} at $27^{\circ} \mathrm{C}$ and 200 kPa , and the other compartment contains 7.5 kmol of H_{2} gas at $40^{\circ} \mathrm{C}$ and 400 kPa . Now the partition is removed, and the two gases are allowed to mix. Determine (a) the mixture temperature and (b) the mixture pressure after equilibrium has been established. Assume constant specific heats at room temperature for both gases.

13-52 The moles, temperatures, and pressures of two gases forming a mixture are given. The mixture temperature and pressure are to be determined.
Assumptions 1 Under specified conditions both CO_{2} and H_{2} can be treated as ideal gases, and the mixture as an ideal gas mixture. $\mathbf{2}$ The tank is insulated and thus there is no heat transfer. 3 There are no other forms of work involved.
Properties The molar masses and specific heats of CO_{2} and H_{2} are $44.0 \mathrm{~kg} / \mathrm{kmol}, 2.0 \mathrm{~kg} / \mathrm{kmol}, 0.657$ $\mathrm{kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$, and $10.183 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$, respectively. (Tables A-1 and A-2b).
Analysis (a) We take both gases as our system. No heat, work, or mass crosses the system boundary, therefore this is a closed system with $Q=0$ and $W=0$. Then the energy balance for this closed system reduces to

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta E_{\text {sytacm }} \\
0 & =\Delta U=\Delta U_{\mathrm{cO}_{2}}+\Delta U_{\mathrm{H}_{2}} \\
0 & =\left[m c_{v}\left(T_{m}-T_{1}\right)\right]_{\mathrm{CO}_{2}}+\left[m c_{v}\left(T_{m}-T_{1}\right)\right]_{\mathrm{H}_{2}}
\end{aligned}
$$

Using c_{v} values at room temperature and noting that $m=N M$, the final temperature of the mixture is determined to be

$$
\begin{gathered}
(2.5 \times 44 \mathrm{~kg})\left(0.657 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(T_{m}-27^{\circ} \mathrm{C}\right)+(7.5 \times 2 \mathrm{~kg})\left(10.183 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(T_{m}-40^{\circ} \mathrm{C}\right)=0 \\
T_{m}=35.8^{\circ} \mathrm{C}(308.8 \mathrm{~K})
\end{gathered}
$$

(b) The volume of each tank is determined from

$$
\begin{aligned}
& V_{\mathrm{CO}_{2}}=\left(\frac{N R_{w} T_{1}}{P_{1}}\right)_{\mathrm{CO}_{2}}=\frac{(2.5 \mathrm{kmol})\left(8.314 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K}\right)(300 \mathrm{~K})}{200 \mathrm{kPa}}=31.18 \mathrm{~m}^{3} \\
& V_{\mathrm{H}_{2}}=\left(\frac{N R_{w} T_{1}}{P_{1}}\right)_{\mathrm{H}_{2}}=\frac{(7.5 \mathrm{kmol})\left(8.314 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K}\right)(313 \mathrm{~K})}{400 \mathrm{kPa}}=48.79 \mathrm{~m}^{3}
\end{aligned}
$$

Thus,
$V_{\mathrm{m}}=V_{\mathrm{CO}_{2}}+V_{\mathrm{H}_{2}}=31.18 \mathrm{~m}^{3}+48.79 \mathrm{~m}^{3}=79.97 \mathrm{~m}^{3}$
$N_{\mathrm{mm}}=N_{\mathrm{CO}_{2}}+N_{\mathrm{H}_{2}}=2.5 \mathrm{kmol}+7.5 \mathrm{kmol}=10.0 \mathrm{kmol}$
and

$$
P_{m}=\frac{N_{m} R_{u} T_{m}}{V_{m}}=\frac{(10.0 \mathrm{kmol})\left(8.314 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K}\right)(308.8 \mathrm{~K})}{79.97 \mathrm{~m}^{3}}=321 \mathrm{kPa}
$$

14-15 A tank contains 21 kg of dry air and 0.3 kg of water vapor at $30^{\circ} \mathrm{C}$ and 100 kPa total pressure. Determine (a) the specific humidity, (b) the relative humidity, and (c) the volume of the tank.

14-15 A tank contains dry air and water vapor at specified conditions. The specific humidity, the relative humidity, and the volume of the tank are to be determined.
Assumptions The air and the water vapor are ideal gases.
Analysis (a) The specific humidity can be determined form its definition,

$$
\omega=\frac{m_{v}}{m_{a}}=\frac{0.3 \mathrm{~kg}}{21 \mathrm{~kg}}=0.0143 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air }
$$

(b) The saturation pressure of water at $30^{\circ} \mathrm{C}$ is

$$
P_{g}=P_{\text {sat @ } 30^{\circ} \mathrm{C}}=4.2469 \mathrm{kPa}
$$

Then the relative humidity can be determined from

$$
\phi=\frac{\omega P}{(0.622+\omega) P_{g}}=\frac{(0.0143)(100 \mathrm{kPa})}{(0.622+0.0143)(4.2469 \mathrm{kPa})}=\mathbf{5 2 . 9} \%
$$

(c) The volume of the tank can be determined from the ideal gas relation for the dry air,

$$
\begin{aligned}
P_{v} & =\phi P_{g}=(0.529)(4.2469 \mathrm{kPa})=2.245 \mathrm{kPa} \\
P_{a} & =P-P_{v}=100-2.245=97.755 \mathrm{kPa} \\
v & =\frac{m_{a} R_{a} T}{P_{n}}=\frac{(21 \mathrm{~kg})(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(303 \mathrm{~K})}{97.755 \mathrm{kPa}}=\mathbf{1 8 . 7} \mathbf{m}^{\mathbf{3}}
\end{aligned}
$$

14-17 A room contains air at $20^{\circ} \mathrm{C}$ and 98 kPa at a relative humidity of 85 percent. Determine (a) the partial pressure of dry air, (b) the specific humidity of the air, and (c) the enthalpy per unit mass of dry air.

14-17 A room contains air at specified conditions and relative humidity. The partial pressure of air, the specific humidity, and the enthalpy per unit mass of dry air are to be determined.
Assumptions The air and the water vapor are ideal gases.
Analysis (a) The partial pressure of dry air can be determined from

$$
\begin{aligned}
& P_{v}=\phi P_{g}-\phi P_{\text {sa }} 200^{\circ} \mathrm{C}-(0.85)(2.3392 \mathrm{kPa})=1.988 \mathrm{kPa} \\
& P_{a}-P-P_{v}=98-1.988-96.01 \mathrm{kPa}
\end{aligned}
$$

(b) The specific humidity of air is determined from

$$
\omega=\frac{0.622 P_{v}}{P-P_{v}}=\frac{(0.622)(1.988 \mathrm{kPa})}{(98-1.988) \mathrm{kPa}}=0.0129 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \mathrm{dry} \text { air }
$$

(c) The enthalpy of air per unit mass of dry air is determined from

$$
\begin{aligned}
h & -h_{a}+\omega h_{v} \propto c_{p} T+\omega h_{g} \\
& -\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(20^{\circ} \mathrm{C}\right)+(0.0129)(2537.4 \mathrm{~kJ} / \mathrm{kg})=52.78 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

14-31 The dry- and wet-bulb temperatures of atmospheric air at 95 kPa are 25 and $17^{\circ} \mathrm{C}$, respectively. Determine (a) the specific humidity, (b) the relative humidity, and (c) the enthalpy of the air, in $\mathrm{kJ} / \mathrm{kg}$ dry air.

14-31 The dry-and wet-bulb temperatures of atmospheric air at a specified pressure are given. The specific humidity, the relative humidity, and the enthalpy of air are to be determined.
Assumptions The air and the water vapor are ideal gases.
Analysis (a) We obtain the properties of water vapor from EES. The specific humidity ω_{1} is determined from

$$
\omega_{1}-\frac{c_{p}\left(T_{2}-T_{1}\right)+\omega_{2} h_{f 2}}{h_{g 1}-h_{f 2}}
$$

where T_{2} is the wet-bulb temperature, and ω_{2} is determined from

$$
\omega_{2}=\frac{0.622 P_{g^{2}}}{P_{2}-P_{g 2}}-\frac{(0.622)(1.938 \mathrm{kPa})}{(95-1.938) \mathrm{kPa}}=0.01295 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air }
$$

95 kPa
$25^{\circ} \mathrm{C}$
$T_{w b}=17^{\circ} \mathrm{C}$

Thus, $\quad \omega_{1}-\frac{\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(17-25)^{\circ} \mathrm{C}+(0.01295)(2460.6 \mathrm{~kJ} / \mathrm{kg})}{(2546.5-71.36) \mathrm{kJ} / \mathrm{kg}}-0.00963 \mathrm{~kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \mathrm{dry}$ air
(b) The relative humidity ϕ is determined from

$$
\phi_{1}-\frac{\omega_{1} R_{1}}{\left(0.622+\omega_{1}\right) P_{g 1}}-\frac{(0.00963)(95 \mathrm{kPa})}{(0.622+0.00963)(3.1698 \mathrm{kPa})}=0.457 \text { or } 45.7 \%
$$

(c) The enthalpy of air per unit mass of dry air is determined from

$$
h_{1}-h_{a 1}+\omega_{1} h_{\mathrm{v} 1} \approx c_{p} T_{1}+\omega_{1} h_{g 1}-\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(25^{\circ} \mathrm{C}\right)+(0.00963)(2546.5 \mathrm{~kJ} / \mathrm{kg})
$$

$$
\text { - } 49.65 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
$$

14-32 The air in a room has a dry-bulb temperature of $22^{\circ} \mathrm{C}$ and a wet-bulb temperature of $16^{\circ} \mathrm{C}$. Assuming a pressure of 100 kPa , determine (a) the specific humidity, (b) the relative humidity, and (c) the dew-point temperature. Answers: (a) $0.0090 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air, (b) 54.1 percent, (c) $12.3^{\circ} \mathrm{C}$

14-32 The dry- and wet-bulb temperatures of air in room at a specified pressure are given. The specific humidity, the relative humidity, and the dew-point temperature are to be determined.
Assumptions The air and the water vapor are ideal gases.
Analysis (a) We obtain the properties of water vapor from EES. The specific humidity ω_{1} is determined from

$$
\omega_{1}=\frac{c_{p}\left(T_{2}-T_{1}\right)+\omega_{2} h_{f g 2}}{h_{g 1}-h_{f 2}}
$$

where T_{2} is the wet-bulb temperature, and ω_{2} is determined from

$$
\omega_{2}=\frac{0.622 P_{g 2}}{P_{2}-P_{g 2}}=\frac{(0.622)(1.819 \mathrm{kPa})}{(100-1.819) \mathrm{kPa}}=0.01152 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air }
$$

$$
\begin{gathered}
100 \mathrm{kPa} \\
22^{\circ} \mathrm{C} \\
T_{\mathrm{wb}}=16^{\circ} \mathrm{C}
\end{gathered}
$$

Thus, $\quad \omega_{1}=\frac{\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(16-22)^{\circ} \mathrm{C}+(0.01152)(2463.0 \mathrm{~kJ} / \mathrm{kg})}{(2541.1-67.17) \mathrm{kJ} / \mathrm{kg}}=0.00903 \mathrm{~kg} \mathrm{H} \mathbf{2} \mathbf{O} / \mathrm{kg}$ dry air
(b) The relative humidity ϕ_{1} is determined from

$$
\phi_{1}=\frac{\omega_{1} P_{1}}{\left(0.622+\omega_{1}\right) P_{g 1}}=\frac{(0.00903)(100 \mathrm{kPa})}{(0.622+0.0091)(2.6452 \mathrm{kPa})}=0.541 \text { or } \mathbf{5 4 . 1} \%
$$

(c) The vapor pressure at the inlet conditions is

$$
P_{v 1}=\phi_{1} P_{g l}=\phi_{1} P_{\text {sat } @ 22^{\circ} \mathrm{C}}=(0.541)(2.6452 \mathrm{kPa})=1.432 \mathrm{kPa}
$$

Thus the dew-point temperature of the air is

$$
T_{\mathrm{dp}}=T_{\text {sat } @ P_{v}}=T_{\text {sat } @ 1.432 \mathrm{kPa}}=12.3^{\circ} \mathrm{C}
$$

14-35 Atmospheric air at $35^{\circ} \mathrm{C}$ flows steadily into an adiabatic saturation device and leaves as a saturated mixture at $25^{\circ} \mathrm{C}$. Makeup water is supplied to the device at $25^{\circ} \mathrm{C}$. Atmospheric pressure is 98 kPa . Determine the relative humidity and specific humidity of the air.

14-35 Atmospheric air flows steadily into an adiabatic saturation device and leaves as a saturated vapor. The relative humidity and specific humidity of air are to be determined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process ($h_{a 1}-h_{a 2}-m_{a}$). 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Analysis The exit state of the air is completely specified, and the total pressure is 98 kPa . The properties of the moist air at the exit state may be determined from EES to be

$$
\left.\begin{array}{l}
h_{2}-78.11 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
\omega_{2}-0.02079 \mathrm{~kg} \mathrm{H} \\
2
\end{array}\right) / \mathrm{kg} \text { dry air }
$$

The enthalpy of makeup water is

$$
h_{\star 2}-h_{\text {fave } 25^{\circ} \mathrm{C}}-104.83 \mathrm{~kJ} / \mathrm{kg} \quad \text { (Table A - 4) }
$$

An energy balance on the control volume gives

$$
\begin{gathered}
h_{1}+\left(\omega_{2}-\omega_{1}\right) h_{w}-h_{2} \\
h_{1}+\left(0.02079-\omega_{1}\right)(104.83 \mathrm{~kJ} / \mathrm{kg})-78.11 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Pressure and temperature are known for inlet air. Other properties may be determined from this equation using EES. A hand solution would require a trial-error approach. The results are

$$
\begin{aligned}
& h_{1}-77.66 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{1}-0.01654 \mathrm{~kg} \mathrm{H} \\
& 2
\end{aligned} \mathrm{O} / \mathrm{kg} \text { dry air } \quad \begin{aligned}
& \phi_{1}-0.4511
\end{aligned}
$$

14-68 Air enters a heating section at $95 \mathrm{kPa}, 12^{\circ} \mathrm{C}$, and 30 percent relative humidity at a rate of $6 \mathrm{~m}^{3} / \mathrm{min}$, and it leaves at $25^{\circ} \mathrm{C}$. Determine (a) the rate of heat transfer in the heating section and (b) the relative humidity of the air at the exit.
Answers: (a) $91.1 \mathrm{~kJ} / \mathrm{min}$, (b) 13.3 percent

14-68 Air enters a heating section at a specified state and relative humidity. The rate of heat transfer in the heating section and the relative humidity of the air at the exit are to be determined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process. 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Analysis (a) The amount of moisture in the air remains constant ($\omega_{1}=\omega_{2}$) as it flows through the heating section since the process involves no humidification or dehumidification. The inlet state of the air is completely specified, and the total pressure is 95 kPa . The properties of the air are determined to be

```
\(P_{n 1}=\phi_{1} P_{g 1}=\phi_{1} P_{\mathrm{skg}} \mathrm{g} 12 \mathrm{C}=(0.3)(1.403 \mathrm{kPa})=0.421 \mathrm{kPa}\)
\(P_{a 1}=P_{1}-P_{n}=95-0.421-94.58 \mathrm{kPa}\)
    \(v_{1}=\frac{R_{a} T_{1}}{P_{a 1}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{K}\right)(285 \mathrm{~K})}{94.58 \mathrm{kPa}}\)
    \(-0.8648 \mathrm{~m}^{3} / \mathrm{kg}\) dry air
```



```
\(\omega_{1}=\frac{0.622 P_{v 1}}{P_{1}-P_{v 1}}=\frac{0.622(0.421 \mathrm{kPa})}{(95-0.421) \mathrm{kPa}}=0.002768 \mathrm{~kg} \mathrm{H} 2 \mathrm{O} / \mathrm{kg}\) dry air \(\left(-\omega_{2}\right)\)
\(h_{1}-c_{p} T_{1}+\omega_{1} h_{g 1}-\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(12^{\circ} \mathrm{C}\right)+(0.002768)(2522.9 \mathrm{~kJ} / \mathrm{kg})\)
\(-19.04 \mathrm{~kJ} / \mathrm{kg}\) dry air
and
\[
\begin{aligned}
h_{2} & =c_{p} T_{2}+\omega_{2} h_{g 2}-\left(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\left(25^{\circ} \mathrm{C}\right)+(0.002768)(2546.5 \mathrm{~kJ} / \mathrm{kg}) \\
& -32.17 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
\end{aligned}
\]
Also,
\[
\dot{m}_{a l}=\frac{\dot{V}_{1}}{v_{1}}=\frac{6 \mathrm{~m}^{3} / \mathrm{min}}{0.8648 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }}=6.938 \mathrm{~kg} / \mathrm{min}
\]
```

Then the rate of heat transfer to the air in the heating section is determined from an energy balance on air in the heating section to be

$$
\dot{Q}_{\text {in }}=\dot{m}_{d}\left(h_{2}-h_{1}\right)=(6.938 \mathrm{~kg} / \mathrm{min})(32.17-19.04) \mathrm{kJ} / \mathrm{kg}-91.1 \mathrm{~kJ} / \mathrm{min}
$$

(b) Noting that the vapor pressure of air remains constant $\left(P_{v 2}=P_{v 1}\right)$ during a simple heating process, the relative humidity of the air at leaving the heating section becomes

$$
\phi_{2}=\frac{P_{v 2}}{P_{g^{2}}}=\frac{P_{v 2}}{P_{\text {sang2 }}{ }^{\circ} \mathrm{C}}-\frac{0.421 \mathrm{kPa}}{3.1698 \mathrm{kPa}}=0.133 \text { or } 13.3 \%
$$

14-70 Air enters a 40 -cm-diameter cooling section at $1 \mathrm{~atm}, 32^{\circ} \mathrm{C}$, and 30 percent relative humidity at $18 \mathrm{~m} / \mathrm{s}$. Heat is removed from the air at a rate of $1200 \mathrm{~kJ} / \mathrm{min}$. Determine (a) the exit temperature, (b) the exit relative humidity of the air, and (c) the exit velocity. Answers: (a) $24.4^{\circ} \mathrm{C}$, (b) 46.6 percent, (c) $17.6 \mathrm{~m} / \mathrm{s}$

14-70 Air enters a cooling section at a specified pressure, temperature, velocity, and relative humidity. The exit temperature, the exit relative humidity of the air, and the exit velocity are to be deternined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process ($\dot{m}_{a 1}-\dot{m}_{a 2}-\dot{m}_{a}$). 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Analysis (a) The amount of moisture in the air remains constant ($\omega_{1}=\omega_{2}$) as it flows through the cooling section since the process involves no humidification or dehumidification. The inlet state of the air is completely specified, and the total pressure is 1 atm . The properties of the air at the inlet state are determined from the psychrometric chart (Figure A-31) to be

$$
\begin{aligned}
& h_{1}-55.0 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{1}-0.0089 \mathrm{~kg} \mathrm{H} \\
& 2 \\
& \mathrm{O} / \mathrm{kg} \text { dry air }\left(-\omega_{2}\right) \\
& v_{1}-0.877 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

The mass flow rate of dry air through the cooling section is

$$
\begin{aligned}
m_{a} & =\frac{1}{v_{1}} V_{1} A_{1} \\
& =\frac{1}{\left(0.877 \mathrm{~m}^{3} / \mathrm{kg}\right)}(18 \mathrm{~m} / \mathrm{s})\left(\pi \times 0.4^{2} / 4 \mathrm{~m}^{2}\right)-2.58 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

From the energy balance on air in the cooling section,

$$
\begin{aligned}
-\dot{\underline{Q}}_{\mathrm{ou}} & =\dot{m}_{a}\left(h_{2}-h_{1}\right) \\
-1200 / 60 \mathrm{~kJ} / \mathrm{s} & =(2.58 \mathrm{~kg} / \mathrm{s})\left(h_{2}-55.0\right) \mathrm{kJ} / \mathrm{kg} \\
h_{2} & =47.2 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

The exit state of the air is fixed now since we know both h_{2} and ω_{2}. From the psychrometric chart at this state we read

$$
T_{2}=24.4^{\circ} \mathrm{C}
$$

(b) $\quad \phi_{2}=46.6 \%$

$$
\begin{equation*}
v_{2}=0.856 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air } \tag{b}
\end{equation*}
$$

(c) The exit velocity is determined from the conservation of mass of dry air,

$$
\begin{aligned}
& \dot{m}_{a 1}=\dot{m}_{a 2} \longrightarrow \frac{\dot{V}_{1}}{v_{1}}-\frac{\dot{V}_{2}}{V_{2}} \longrightarrow \frac{V_{1} A}{v_{1}}-\frac{V_{2} A}{v_{2}} \\
& V_{2}=\frac{V_{2}}{V_{1}} V_{1}=\frac{0.856}{0.877}(18 \mathrm{~m} / \mathrm{s})-17.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

14-73 Air at $1 \mathrm{~atm}, 15^{\circ} \mathrm{C}$, and 60 percent relative humidity is first heated to $20^{\circ} \mathrm{C}$ in a heating section and then humidified by introducing water vapor. The air leaves the humidifying section at $25^{\circ} \mathrm{C}$ and 65 percent relative humidity. Determine (a) the amount of steam added to the air, and (b) the amount of heat transfer to the air in the heating section. Answers: (a) $0.0065 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air, (b) $5.1 \mathrm{~kJ} / \mathrm{kg}$ dry air

14-73 Air is first heated and then humidified by water vapor. The amount of steam added to the air and the amount of heat transfer to the air are to be determined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process ($h_{a 1}-h_{a 2}-m_{a}$). 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Properties The inlet and the exit states of the air are completely specified, and the total pressure is 1 atm The properties of the air at various states are determined from the psychrometric chart (Figure A-31) to be
$h_{1}=31.1 \mathrm{~kJ} / \mathrm{kg}$ dry air
$\omega_{1}=0.0064 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air $\left(-\omega_{2}\right)$
$h_{2}-36.2 \mathrm{~kJ} / \mathrm{kg}$ dry air
$h_{3}=581 \mathrm{~kJ} / \mathrm{kg}$ dry air
$\omega_{3}=0.0129 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air
Analysis (a) The amount of moisture in the air remains constant it flows through the heating section ($\omega_{1}=\omega_{2}$), but increases in the
 humidifying section ($\omega_{3}>\omega_{2}$). The amount of steam added to the air in the heating section is

$$
\Delta \omega=\omega_{3}-\omega_{2}-0.0129-0.0064-0.0065 \lg \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air }
$$

(b) The heat transfer to the air in the heating section per unit mass of air is

$$
q_{\mathrm{in}}-h_{2}-h_{1}-36.2-31.1-5.1 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
$$

14-75 An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplies wet steam (saturated water vapor) at $100^{\circ} \mathrm{C}$. Air enters the heating section at $10^{\circ} \mathrm{C}$ and 70 percent relative humidity at a rate of $35 \mathrm{~m}^{3} / \mathrm{min}$, and it leaves the humidifying section at $20^{\circ} \mathrm{C}$ and 60 percent relative humidity. Determine (a) the temperature and relative humidity of air when it leaves the heating section, (b) the rate of heat transfer in the heating section, and (c) the rate at which water is added to the air in the humidifying section.

14-75 Air is first heated and then humidified by wet steam. The temperature and relative humidity of air at the exit of heating section, the rate of heat transfer, and the rate at which water is added to the air are to be determined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process ($\dot{m}_{a 1}-\dot{m}_{a 2}-\dot{m}_{a}$). 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Properties The inlet and the exit states of the air are completely specified, and the total pressure is 1 atm. The properties of the air at various states are determined from the psychrometric chart (Figure A-31) to be

$$
\begin{aligned}
& h_{1}-23.5 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{1}-0.0053 \mathrm{~kg} \mathrm{H} \\
& 2
\end{aligned} \mathrm{O} / \mathrm{kg} \text { dry air }\left(-\omega_{2}\right) .
$$

Analysis (a) The amount of moisture in the air remains constant it flows through the heating section ($\omega_{1}=\omega_{2}$), but increases in the humidifying section ($\omega_{3}>\omega_{2}$). The mass flow rate of dry air is

$$
m_{a}=\frac{\dot{V}_{1}}{V_{1}}=\frac{35 \mathrm{~m}^{3} / \mathrm{min}}{0.809 \mathrm{~m}^{3} / \mathrm{kg}}=43.3 \mathrm{~kg} / \mathrm{min}
$$

Noting that $Q=W=0$, the energy balance on the humidifying section can be expressed as

$$
\begin{aligned}
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\Delta \dot{E}_{\text {system }}{ }^{\text {T0 (neady })}=0 \\
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }} \\
& \Sigma m_{i} h_{i}=\Sigma m_{e} h_{e} \longrightarrow \quad m_{v} h_{w}+m_{a 2} h_{2}=m_{d} h_{3} \\
& \left(\omega_{3}-\omega_{2}\right) h_{w}+h_{2}-h_{3}
\end{aligned}
$$

Solving for h_{2},

$$
h_{2}-h_{3}-\left(\omega_{3}-\omega_{2}\right) h_{g g_{100}+\mathrm{C}}-42.3-(0.0087-0.0053)(2675.6)-33.2 \mathrm{~kJ} / \mathrm{kg} \text { dry air }
$$

Thus at the exit of the heating section we have $\omega_{2}=0.0053 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ dry air and $h_{2}=33.2 \mathrm{~kJ} / \mathrm{kg}$ dry air, which completely fixes the state. Then from the psychrometric chart we read

$$
\begin{aligned}
& T_{2}=19.5^{\circ} \mathrm{C} \\
& \phi_{2}=37.8 \%
\end{aligned}
$$

(b) The rate of heat transfer to the air in the heating section is

$$
\dot{Q}_{\text {in }}=\dot{m}_{a}\left(h_{2}-h_{1}\right)-(43.3 \mathrm{~kg} / \mathrm{min})(33.2-23.5) \mathrm{kJ} / \mathrm{kg}-420 \mathrm{~kJ} / \mathrm{min}
$$

(c) The amount of water added to the air in the humidifying section is determined from the conservation of mass equation of water in the humidifying section,

$$
\dot{m}_{w}-\dot{m}_{a}\left(\omega_{3}-\omega_{2}\right)-(43.3 \mathrm{~kg} / \mathrm{min})(0.0087-0.0053)-0.15 \mathrm{~kg} / \mathrm{min}
$$

14-78 Air enters a window air conditioner at $1 \mathrm{~atm}, 32^{\circ} \mathrm{C}$, and 70 percent relative humidity at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$, and it leaves as saturated air at $15^{\circ} \mathrm{C}$. Part of the moisture in the air
that condenses during the process is also removed at $15^{\circ} \mathrm{C}$. Determine the rates of heat and moisture removal from the air. Answers: $97.7 \mathrm{~kJ} / \mathrm{min}, 0.023 \mathrm{~kg} / \mathrm{min}$

14-78 Air is cooled and dehumidified by a window air conditioner. The rates of heat and moisture removal from the air are to be determined.
Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process ($\dot{m}_{a 1}-\dot{m}_{a 2}-\dot{m}_{a}$). 2 Dry air and water vapor are ideal gases. 3 The kinetic and potential energy changes are negligible.
Properties The inlet and the exit states of the air are completely specified, and the total pressure is 1 atm. The properties of the air at various states are determined from the psychrometric chart (Figure A-31) to be
and
Also,

$$
\begin{aligned}
& h_{1}-86.3 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{1}=0.0211 \mathrm{~kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air } \\
& v_{1}-0.894 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air } \\
& h_{2}-42.0 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{2}-0.0107 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg} \text { dry air } \\
& h_{w}=h_{f @ 15^{\circ} \mathrm{C}}-62.982 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Analysis (a) The amount of moisture in the air decreases due to dehumidification ($\omega_{2}<\omega_{1}$). The mass flow rate of air is

$$
\dot{m}_{a 1}=\frac{\dot{V}_{1}}{V_{1}}=\frac{2 \mathrm{~m}^{3} / \mathrm{min}}{0.894 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }}-2.238 \mathrm{~kg} / \mathrm{min}
$$

Applying the water mass balance and energy balance equations to the combined cooling and dehumidification section,
Water Mass Balance:

$$
\begin{aligned}
& \Sigma \dot{m}_{w,}-\Sigma \dot{m}_{w, e} \longrightarrow \dot{m}_{a 1} \omega_{1}-\dot{m}_{a 2} \omega_{2}+\dot{m}_{w} \\
& \dot{m}_{w}-\dot{m}_{a}\left(\omega_{1}-\omega_{2}\right)-(2.238 \mathrm{~kg} / \mathrm{min})(0.0211-0.0107)-0.0233 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

Energy Balance:

$$
\begin{aligned}
\dot{E}_{\text {in }}-\dot{E}_{\text {out }} & =\Delta \dot{E}_{\text {vatem }} \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\sum \dot{m}_{i} h_{i} & =\dot{Q}_{\text {out }}+\Sigma \dot{m}_{c} h_{e} \\
\dot{Q}_{\text {out }} & =\dot{m}_{a 1} h_{1}-\left(\dot{m}_{a 2} h_{2}+\dot{m}_{w} h_{w}\right)-\dot{m}_{a}\left(h_{1}-h_{2}\right)-\dot{m}_{w} h_{w} \\
\dot{Q}_{\text {out }} & =(2.238 \mathrm{~kg} / \mathrm{min})(86.3-42.0) \mathrm{kJ} / \mathrm{kg}-(0.0233 \mathrm{~kg} / \mathrm{min})(62.982 \mathrm{~kJ} / \mathrm{kg}) \\
& -97.7 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

14-79 An air-conditioning system is to take in air at 1 atm , $34^{\circ} \mathrm{C}$, and 70 percent relative humidity and deliver it at $22^{\circ} \mathrm{C}$ and 50 percent relative humidity. The air flows first over the cooling coils, where it is cooled and dehumidified, and then over the resistance heating wires, where it is heated to the desired temperature. Assuming that the condensate is removed from the cooling section at $10^{\circ} \mathrm{C}$, determine (a) the temperature of air before it enters the heating section, (b) the amount of heat removed in the cooling section, and (c) the amount of heat transferred in the heating section, both in $\mathrm{kJ} / \mathrm{kg}$ dry air.
 (b) The amount of heat remo
applied to the cooling section

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta \dot{E}_{\text {syskes }} \quad \pi 0(\text { stady }) \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\sum m_{i} h_{i} & =\Sigma m_{e} h_{e}+Q_{\text {outosoling }} \\
\dot{Q}_{\text {outcooling }} & =\dot{m}_{a 1} h_{1}-\left(\dot{m}_{a 2} h_{2}+\dot{m}_{*} h_{w}\right)-\dot{m}_{a}\left(h_{1}-h_{2}\right)-\dot{m}_{w} h_{*}
\end{aligned}
$$

or, per unit mass of dry air,

$$
\begin{aligned}
q_{\text {oul_osoling }} & -\left(h_{1}-h_{2}\right)-\left(\omega_{1}-\omega_{2}\right) h_{w} \\
& \mathbf{-}(95.2-31.8)-(0.0238-0.0082) 42.02 \\
& \mathbf{- 6 2 . 7 \mathrm { kJ } / \mathrm { kg } \text { dry air }}
\end{aligned}
$$

(c) The amount of heat supplied in the heating section per unit mass of dry air is
$q_{\text {inlening }}-h_{3}-h_{2}-43.1-31.8-11.3 \mathrm{~kJ} / \mathrm{kg}$ dry air

14-80
Air enters a $30-\mathrm{cm}$-diameter cooling section at $1 \mathrm{~atm}, 35^{\circ} \mathrm{C}$, and 60 percent relative humidity at $120 \mathrm{~m} / \mathrm{min}$. The air is cooled by passing it over a cooling coil through which cold water flows. The water experiences a temperature rise of $8^{\circ} \mathrm{C}$. The air leaves the cooling section saturated at $20^{\circ} \mathrm{C}$. Determine (a) the rate of heat transfer, (b) the mass flow rate of the water, and (c) the exit velocity of the airstream.

14－80［Also sohved by EES on anclased CD］Air is cooled by passing it over a cooling coil through which chillad wator flown．The rate of heat transfer，the mans flow rate of watar，and the exit valocity of airstram are to be detarmined．
Assumptions 1 This is a standy－flow procens mind then the mans flow rate of dry air romsins constant during the ontire process． 2 Dry air and water vapor are ideal gasen． 3 The kinatic and potential anergy changes are negligible．
Analysis（a）The saturation pressure of watar at $35^{\circ} \mathrm{C}$ is 5.6291 kPa （Tabla A－4）．Them the dew point tamperature of the incoming air stream at $35^{\circ} \mathrm{C}$ becomes

$$
T_{d p}=T_{\text {uatg } r_{n}}=T_{\text {uatgobosussnch }}=26^{\circ} \mathrm{C} \text { (Table A-5) }
$$

since sir is cooled to $20^{\circ} \mathrm{C}$ ，which is balow its dew point tomperature，some of the moisture in the air will condense．The amount of moisture in the vir decrases d as to dehumidification（ $\omega_{2}<\omega_{1}$ ）．The inlet and the axit states of the air are completaly specifisd，and the total prosure is 1 atm．Than the propacties of the air at both states are determined from the paychrometric chart（Fig．A－31）to be

$$
\begin{aligned}
& h_{1}=90.3 \mathrm{~kJ} / \mathrm{kg} \text { dry zir } \\
& \omega_{1}=0.0215 \mathrm{~kg} \mathrm{H} \mathrm{H}_{2} \mathrm{Olg} \text { dryair } \\
& v_{1}=0.904 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air } \\
& h_{2}=57.5 \mathrm{k} / \mathrm{kg} \text { dry zir } \\
& \omega_{2}=0.0147 \mathrm{~kg} \mathrm{H}{ }_{2} \mathrm{O} / \mathrm{kg} \text { dry zir } \\
& v_{2}=0.851 \mathrm{~m}^{3} / \mathrm{kg} \text { dry } \quad \mathrm{im}
\end{aligned}
$$

and

Alvo，$\quad h_{v} a h_{f g} \times \operatorname{coc}=83.93 \mathrm{~kJ} / \mathrm{kg} \quad$（Table A－4）
（1）

Than，

$$
\begin{aligned}
& \bar{V}_{1}=V_{1} A_{1}=V_{1} \frac{\pi D^{2}}{4}=(120 \mathrm{~m} / \mathrm{min})\left(\frac{\pi(0.3 \mathrm{~m})^{2}}{4}\right)-8.48 \mathrm{~m}^{3} / \mathrm{min} \\
& \text { metat }_{21}=\frac{\bar{V}_{1}}{v_{1}}=\frac{8.48 \mathrm{~m}^{3} / \mathrm{min}}{0.904 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }}=9.38 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

Applying the water mass balance and the anergy balance equations to the combined cooling and dahumidification section（excluding the watar），
Water Mass Balance：$\quad \Sigma \dot{M}_{*, j}=\Sigma \dot{m}_{\omega, 4} \longrightarrow \dot{M}_{a 1} \omega_{1}=\dot{M}_{42} \omega_{2}+\dot{M}_{\infty}$

$$
\dot{m}_{v}=\dot{m}_{a}\left(\omega_{1}-\omega_{2}\right)=(9.38 \mathrm{~kg} / \min)(0.0215-0.0147)=0.064 \mathrm{~kg} / \mathrm{min}
$$

Energy Balance：

$$
\begin{aligned}
& \Sigma \dot{m}_{2} h_{1}=\Sigma \dot{m}_{d} h_{e}+Q_{\text {oet }} \longrightarrow Q_{\text {our }}=\dot{m}_{a t} h_{1}-\left(\dot{m}_{a 2} h_{2}+\dot{m}_{2} h_{q}\right)=\dot{m}_{4}\left(h_{1}-h_{2}\right)-\dot{m}_{\infty} h_{\infty} \\
& \dot{Q}_{\text {out }}=(9.38 \mathrm{~kg} / \mathrm{min})(90.3-57.5) \mathrm{kJ} / \mathrm{kg}-(0.064 \mathrm{~kg} / \mathrm{min})(83.93 \mathrm{~kJ} / \mathrm{kg})=302.3 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

（b）Noting that the bast loat by the xir is gxined by the cooling watar，the mass flow rate of the cooling water is detarminad from

$$
\begin{aligned}
& Q_{\text {oceling water }}=\dot{m}_{\text {cooling matar }} \Delta h=\dot{M}_{\text {cooling wnie }} c_{p} \Delta T \\
& \text { 先 }_{\text {encling wave }}=\frac{\dot{Q}_{\mathrm{w}}}{c_{p} \Delta T}=\frac{302.3 \mathrm{~kJ} / \mathrm{min}}{\left(4.18 \mathrm{LJ} / \mathrm{kg}{ }^{*} \mathrm{C}\right)\left(8^{*} \mathrm{C}\right)}=9.04 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

（c）The axit velocity is detarmined from the comvarvation of mass of dry air，

$$
\begin{aligned}
& \mathrm{H}_{a t}=\text { 解 }^{\longrightarrow} \longrightarrow \frac{\dot{V}_{1}}{V_{1}}=\frac{V_{2}}{V_{2}} \longrightarrow \frac{V_{1} A}{V_{1}}=\frac{V_{2} A}{V_{2}} \\
& V_{2}=\frac{V_{2}}{V_{1}} V_{1}=\frac{0.851}{0.904}(120 \mathrm{~m} / \mathrm{min})=113 \mathrm{~m} / \mathrm{mim}
\end{aligned}
$$

14-102 Two airstreams are mixed steadily and adiabatically. The first stream enters at $32^{\circ} \mathrm{C}$ and 40 percent relative humidity at a rate of $20 \mathrm{~m}^{3} / \mathrm{min}$, while the second stream enters at $12^{\circ} \mathrm{C}$ and 90 percent relative humidity at a rate of $25 \mathrm{~m}^{3} / \mathrm{min}$. Assuming that the mixing process occurs at a pressure of 1 atm , determine the specific humidity, the relative humidity, the dry-bulb temperature, and the volume flow rate of the mixture. Answers: $0.0096 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{kg}$ dry air, 63.4 percent, $20.6^{\circ} \mathrm{C}$, $45.0 \mathrm{~m}^{3} / \mathrm{min}$

14-102 Two zirstrasms are mixad stasdily. The apecific humidity, the ralative humidity, the dry-bulb temperature, zad the volume flow rate of the mixture zre to be detarmined.
Assumptions 1 Steady operating conditions axist 2 Dry zir and water vapor aro ideal gases. 3 The kinatic and potantial anergy changes are magligible. 4 The mixing section is adiabatic.
Properties Propertias of asch inlat straam are detarminad from the peychrometric chart (Fig A-31) to be
$h_{1}=62.7 \mathrm{~kJ} / \mathrm{kg}$ dry air $\quad h_{2}=31.9 \mathrm{~kJ} / \mathrm{kg}$ dry air
$\omega_{1}=0.0119 \mathrm{~kg} \mathrm{H}_{2} \mathrm{Olg}$ dry air \quad and $\omega_{2}=0.0079 \mathrm{~kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \mathrm{kg}$ dry air $v_{1}=0.882 \mathrm{~m}^{3} / \mathrm{kg}$ dry air $\quad v_{2}=0.819 \mathrm{~m}^{3} / \mathrm{kg}$ dry mz Analysis Tbe mass flow rate of dry air in each stream is

From the comarvation of mass,

$$
\dot{m}_{a 3}=\dot{m}_{s 1}+\dot{m}_{a 2}=(22.7+30.5) \mathrm{kg} / \text { min }=53.2 \mathrm{~kg} / \mathrm{min}
$$

The specific humidity and the eathalpy of the mixture can be determined from Eqz. 14-24, which sre obtainad by combining the conservation of mans and coargy equations for the adiabatic mining of two stroums:

$$
\begin{aligned}
& \frac{\dot{m}_{11}}{\omega_{42}}=\frac{\omega_{2}-\omega_{1}}{\omega_{3}-\omega_{1}}=\frac{h_{2}-h_{1}}{h_{3}-h_{1}} \\
& \frac{22.7}{305}=\frac{0.0079-\omega_{3}}{\omega_{3}-0.0119}=\frac{319-h_{3}}{h_{3}-62.7}
\end{aligned}
$$

which yiolds,
$\omega_{3}=0.0096 \mathrm{~kg} \mathrm{H} \mathrm{O} / \mathrm{kg}$ dry air
$h_{3}=45.0 \mathrm{~kJ} / \mathrm{kg}$ dry zir
These two propertios fix the state of the mixture. Other propartios of the mixture are datarmined from the payclarometric chart:

$$
T_{3}=20.6^{\circ} \mathrm{C}
$$

$$
\phi_{3}=63.4 \%
$$

$$
v_{3}=0.845 \mathrm{~m}^{3} / \mathrm{kg} \text { dy } \mathrm{xir}
$$

Finally, the volume flow rate of the mixture is detarmined from
$\dot{v}_{3}=\dot{H}_{a 3} V_{3}=(53.2 \mathrm{~kg} / \mathrm{min})\left(0.845 \mathrm{~m}^{3} / \mathrm{kg}\right)=45.0 \mathrm{~m}^{3} / \mathrm{min}$

$$
\begin{aligned}
& \dot{m}_{a 1}=\frac{\dot{V}_{1}}{v_{1}}=\frac{20 \mathrm{~m}^{3} / \min }{0.882 \mathrm{~m}^{3} / \mathrm{kg} \text { dy } \mathrm{zir}}=22.7 \mathrm{~kg} / \mathrm{min} \\
& \dot{m}_{\mathrm{A} 2}=\frac{\dot{V}_{2}}{V_{2}}=\frac{25 \mathrm{~m}^{3} / \mathrm{min}}{0.819 \mathrm{~m}^{3} / \mathrm{kg} \text { dry } z i r}=30.5 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

14-110 The cooling water from the condenser of a power plant enters a wet cooling tower at $40^{\circ} \mathrm{C}$ at a rate of $90 \mathrm{~kg} / \mathrm{s}$. The water is cooled to $25^{\circ} \mathrm{C}$ in the cooling tower by air that enters the tower at $1 \mathrm{~atm}, 23^{\circ} \mathrm{C}$, and 60 percent relative humidity and leaves saturated at $32^{\circ} \mathrm{C}$. Neglecting the power input to the fan, determine (a) the volume flow rate of air into the cooling tower and (b) the mass flow rate of the required makeup water.

14-110 Water is cooled by air in a cooling towar. The volume flow rate of air and the mass flow rate of the required makeup wasar are to be detenmined.
Assumptions 1 Steady operating conditions axiat and thus mass flow rate of dry air remains constant during the ontire procens. 2 Dry zir and water vapor are ideal gases. 3 The linatic and potantial anargy changs are negligible. 4 The cooling tower is adiabatic.
Analysis (a) The mass flow rate of dry air through the towar ramsins constant $\left(m_{a 1}=\omega_{a 2}=h_{a}\right)$, but the mass flow rate of liquid water decreases by manount equal to the amount of wator that viporizes in the tower during the cooling process. The water lost through evaporation must be made up latar in the cycle to maintain steady oparation. Applying the mass and anargy balances yields
Dry Air Mass Balance:

$$
\Sigma \dot{m}_{\infty, 1}=\Sigma \dot{m}_{a} \quad \longrightarrow \quad \dot{m}_{A 1}=\dot{m}_{e 2}=\dot{m}_{\infty}
$$

Water Mass Balance:

$$
\begin{aligned}
& \sum \dot{m}_{w,}=\sum \dot{m}_{\infty,} \longrightarrow \dot{m}_{3}+\dot{m}_{41} \omega_{1}=\dot{m}_{4}+\dot{m}_{n 2} w_{2} \\
& \dot{m}_{1}-\dot{m}_{4}=\dot{m}_{4}\left(\omega_{2}-\omega_{1}\right)-\dot{m}_{\text {nuk }}=0
\end{aligned}
$$

Energy Balance:

$$
\begin{aligned}
& \dot{E}_{\text {h }}=\dot{E}_{\text {oct }} \\
& \sum \text { m }_{1} h_{j}=\sum \text { m }_{d} h_{e} \text { since } Q=W=0 \\
& 0=\Sigma \dot{m}_{e} h_{s}-\sum \dot{m}_{2} h_{1} \\
& 0=\dot{m}_{62} h_{2}+\dot{m}_{4} h_{4}-\dot{m}_{41} h_{1}-\dot{m}_{3} h_{3} \\
& 0=\text { 㸠 }_{4}\left(h_{2}-h_{1}\right)+\left(h_{3}-h_{m \times m p}\right) h_{4}-\omega_{3} h_{3}
\end{aligned}
$$

Solving for $\dot{\tilde{m}}_{4}$,

$$
m_{4}=\frac{\dot{m}_{3}\left(h_{3}-h_{4}\right)}{\left(h_{2}-k_{1}\right)-\left(\omega_{2}-\omega_{1}\right) h_{4}}
$$

From the paychromatric chant (Fig. A-31).

$$
\begin{aligned}
& h_{1}=49.9 \mathrm{lJ} / \mathrm{kg} \text { dry air } \\
& \omega_{1}=0.0105 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \mathrm{~kg} \text { dy } \mathrm{zir} \\
& v_{1}=0.853 \mathrm{~m}^{3} / \mathrm{kg} \text { dry air }
\end{aligned}
$$

and

$$
\begin{aligned}
& h_{2}=110.7 \mathrm{~kJ} / \mathrm{kg} \text { dry air } \\
& \omega_{2}=0.0307 \mathrm{~kg} \mathrm{H} \\
& 2
\end{aligned}
$$

From Table A-4,

$$
\begin{aligned}
& h_{3} \otimes h_{f g 40 \mathrm{C}}=167.53 \mathrm{~kJ} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O} \\
& h_{4} \pm h_{f g 20 \mathrm{c}}=104.83 \mathrm{~kJ} / \mathrm{kg} \mathrm{H}
\end{aligned}
$$

Substituting.

$$
\dot{m}_{c}=\frac{(90 \mathrm{~kg} / \mathrm{s})(167.53-104.83) \mathrm{k} / \mathrm{kg}}{(110.7-49.9) \mathrm{k} / \mathrm{kg}-(0.0307-0.0105)(104.83) \mathrm{k} / \mathrm{kg}}=96.2 \mathrm{~kg} / \mathrm{s}
$$

Then the volume flow rats of air into the cooling tower becomas

$$
\dot{v}_{1}=\dot{m}_{4} v_{1}=(96.2 \mathrm{~kg} / \mathrm{b})\left(0.854 \mathrm{~m}^{3} / \mathrm{kg}\right)=82.2 \mathrm{~m}^{3} / \mathrm{s}
$$

(b) The mass flow rate of the required makeup water is detarmined from

$$
\dot{m}_{\text {makmp }}=\dot{m}_{4}\left(\omega_{2}-\omega_{1}\right)=(96.2 \mathrm{~kg} / 2)(0.0307-0.0105)-1.94 \mathrm{~kg} / \mathrm{s}
$$

