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Steady swimming of the jellyfish Aurelia aurita. Fluorescent dye
placed directly upstream of the animal is drawn underneath the bell
as the body relaxes and forms vortex rings below the animal as the
body contracts and ejects fluid. The vortex rings simultaneously
induce flows for both feeding and propulsion.



Objectives

» ldentify the various kinds of forces and
moments acting on a control volume

» Use control volume analysis to determine the
forces associated with fluid flow

« Use control volume analysis to determine the
moments caused by fluid flow and the torque
transmitted



6—1 m NEWTON’S LAWS

Newton’s laws: Relations between motions of bodies and the forces
acting on them.

Newton’s first law: A body at rest remains at rest, and a body in
motion remains in motion at the same velocity in a straight path
when the net force acting on it is zero.

Therefore, a body tends to preserve its state of inertia.

Newton’s second law: The acceleration of a body is proportional to
the net force acting on it and is inversely proportional to its mass.

Newton’s third law: When a body exerts a force on a second body,
the second body exerts an equal and opposite force on the first.

Therefore, the direction of an exposed reaction force depends on the
body taken as the system.

— —
— . dv dimV)

Newton’'s second law: F=ma= m =
dt dt




Linear momentum or just the momentum of the body:
The product of the mass and the velocity of a body.

Newton’s second law is usually referred to as the

linear momentum equation. _ ——
Conservation of momentum principle: The

momentum of a system remains constant
V only when the net force acting on it is zero.

Net force

&V  dmV)
= -3 m
F=ma=m — = ————
= dt dt
mV
i

Rate of change

of momentum
Linear momentum is the Newton’s second law is also
product of mass and velocity, expressed as the rate of change
and its direction is the of the momentum of a body is

direction of velocity. equal to the net force acting on it. 2



The counterpart of Neutc:-n s second law for rotating rigid bodies 1is
expressed as M = Id, where M is the net moment or torque applied on the
body, I 1s the moment of inertia of the body about the axis of rotation, and &
is the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH Idt as

dw B d(1w) B dH

Angular momentum equation: M= la = (6-2)
dt dt dt
_ dw, dH,
Angular momentum about x-axis: M. =1, —=—
' Coodt drt
The conservation of angular Net torque

momentum Principle: The total angular
momentum of a rotating body remains
constant when the net torque acting on it

is zero, and thus the angular momentum 3 dé d(ia) dH

of such systems is conserved. dt dt @ dt

The rate of change of the angular
momentum of a body is equal to Rate of change
the net torque acting on it. of angular momentum




6—2 m CHOOSING A CONTROL VOLUME

A control volume can be selected as any arbitrary

region in space through which fluid flows, and its

bounding control surface can be fixed, moving, and

even deforming during flow.

Many flow systems involve stationary hardware firmly
fixed to a stationary surface, and such systems are

best analyzed using fixed control volumes.
When analyzing flow systems that are moving or

deforming, it is usually more convenient to allow the

control volume to move or deform.

In deforming control volume, part of the control
surface moves relative to other parts.

Fixed control volume

Examples of
(a) fixed,

(b) moving,
and

(c) deforming
control

@) volumes.

Deforming
control volume

(b)



6—3 m FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of

Body forces that act throughout the entire body of the control
volume (such as gravity, electric, and magnetic forces) and

Surface forces that act on the control surface (such as pressure
and viscous forces and reaction forces at points of contact).

Only external forces are considered in the analysis.

Total force acting on control volume: ™" F = > ;h,”_h + > F surface

Control \olumg (CV)
oL
: The total force acting on a control
'u @ volume is composed of body
’} dF, %, forces and surface forces; body
' y dFue.  force is shown on a differential
- y volume element, and surface

4
l force is shown on a differential
Control surface (CS) surface element.



The most common body force is that of gravity, which exerts a downward force
on every differential element of the control volume.

_:'.
— . . . . —
Gravitational force acting on a fluid element: dF geaviey = pg dV

—

_}
Gravitational vector in Cartesian coordinates: g=—gk

q
Total body force acting on control volume: 2 Fiogy =

IJ.E h'rl'.r"ll = ”-FI:"L'F._’?
“CY

]F}J;{,-;'_Ir__”_;{-,:*; 2 F = z !F';Jr;nil} + 2 F pressure + E f-'-i':-.'uLI:c

+ D F

other

total force body force aurface forces

dy

Surface forces are not as simple to
analyze since they consist of both normal
dz g and tangential components.
dV.p Normal stresses are composed of
_I__ ———— pressure (which always acts inwardly
Y

normal) and viscous stresses.
Shear stresses are composed entirely of
viscous stresses.

dx

B dF gy = dF gragiey = pg dV

gravity
The gravitational force acting on a differential

/L. 7 volume element of fluid is equal to its weight; the

> ‘ axes have been rotated so that the gravity vector 9

acts downward in the negative z-direction.
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surface
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surface, tangential

urface

Surface force acting on a =

differential surface element: surface ]

Total surface force acting

on control surface: 2 Furtace = | oy maA
CS5
Z f-': = Z J’"} dy T E f':q;.-__-_;u = pg dV + a1 dA
s
Total force:
2 F= 2 ‘F-_'l B T F pressure | 2] iscous T E "L:-u--_u.-
_-Il orce b wly force _ . surface forces
When coordinate axes are rotated
(a) to (b), the components of the
surface force change, even
though the force itself remains the
same; only two dimensions are
shown here. 10



dx

Components of the stress tensor In
Cartesian coordinates on the right, top,
and front faces.
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A common simplification in the application of Newton’s laws of motion is to
subtract the atmospheric pressure and work with gage pressures.

This is because atmospheric pressure acts in all directions, and its effect cancels

out in every direction.

This means we can also ignore the pressure forces at outlet sections where the
fluid is discharged to the atmosphere since the discharge pressure in such cases
IS very near atmospheric pressure at subsonic velocities.

Fr J]T F,
—-"l—-a-R Lry) -l-—R -
L — T
E—— e — pﬂ
ILRARES! 1
P Vo -.;-__'.___-_-- I
I N p )
- — o
P atm  (gage
With atmospheric With atmospheric
pressure considered pressure cancelled out

Atmospheric pressure acts in all
directions, and thus it can be ignored
when performing force balances since
its effect cancels out in every direction.

_—_—_—_—_—_1

|
_— .::i?;:il CVB |

L Spigot I

~ e —_—— T
Lvﬂmc:cl Y 1-
Out

X

Cross section through a faucet
assembly, illustrating the importance of
choosing a control volume wisely; CV B
IS much easier to work with than CV A.
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6—4 m THE LINEAR MOMENTUM EQUATION

- Newton’s second law for a system of mass m subjected to net force ZF is
expressed as

—3
n - dVv  d =
>F=mi=m—=—(mV) (6-13)
dt dt

_:..
- where mV is the linear momentum of the system. Noting that both the den-
sity and velocity may change from point to point within the system, New-
ton’s second law can be expressed more generally as

— i —
F=2| ,Vav 6-14
> dJ p (6-14)

sVS
- where ,E_'JI? dV/ 1s the momentum of a differential element 4V, which has mass
Am = pﬂ’b"’. il £3 il £3 il £3

Newton’s second law can be stated as

The sum of all external forces acting on a system is equal to the time rate of
. change of linear momentum of the system.

- This statement is valid for a coordinate system that is at rest or moves with a
constant velocity, called an inertial coordinate system or inertial reference frame.



The sum of all The time rate of change The net flow rate of
external forces of the linear momentum | + | linear momentum out of the
acting on a CV

The linear momentum equation

is obtained by replacing B in &
the Reynolds transport theorem by
the momentum mV, and b by the
momentum per unit mass V.,




(Pressure

force)
FRQ Py gageAl
(Reaction
force)

——— e e e o — — e —

W (Weight)

|
I ——

' (Reaction force)
F R

An 180° elbow supported by the ground

[n most tlow systems, the sum of
forces SF consists of w eights,
pressure forces, and reaction forces.
Gage pressures are used here since
atmospheric pressure cancels out on
all sides of the control surface.

s
> Fr=— Jrji"" dV + | L TV

The momentum equation is
commonly used to calculate the
forces (usually on support
systems or connectors) induced
by the flow.

I i

a | — | — =
VIV -n)dA

CV “C5S
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> F = J oV (V, - iyda  Steady Special Cases
cs flow

;ﬁ;r:J p{v n)dA. = pV,,A. Mass flow rate across
A, an inlet or outlet

[ — — —
J pV(V - 1)dA, = pViy A, ‘-f’m =mV,,. Momentum flow rate across
A ~a uniform inlet or outlet:

&

— 7 \Out
!Hq favg2 . NN r” I .‘”q o3
I g,
\\\-/ gy
Fixed \
~
7/ control \
( volume l . . :
] In a typical engineering
IV//V\ vad problem, the control volume
S 1 3
’ - / may contain many inlets and
M, Vayg 1 Out7/? ~ - \ outlets; at each inlet or outlet
.5 Out . we define the mass flow rate

rave,s My, Vayg a and the average velocity.



|
V=V, g Nozzle — V=V,,

(c)

Examples of inlets or outlets in which
the uniform flow approximation is
reasonable;

(a) the well-rounded entrance to a pipe,
(b) the entrance to a wind tunnel test
section, and

. (c) a slice through a free water jet in air.




Momentum-Flux Correction Factor, S

The velocity across most inlets and outlets is not uniform.

The control surface integral of Eq. 6—17 may be converted into algebraic form using
a dimensionless correction factor g, called the momentum-flux correction factor.

S A " [ == L
E Fr= - pV dV + | pV(V -n)dA (6-17)
I CS
— {;f ) — —_ —%
z‘f _[_. | ,I“IIl {U—l_ 2;-_;"'4-;['-.' T E!;‘Ii;u
den ot L
] — =, .
Momentum flux across an inlet or outlet: pV(V -n)dA.= BPmV,,,
A,
. . _
P" . 7)dA., pV(V - ii)dA, B is always greater than or equal to 1.
A A, pBis close to 1 for turbulent flow and
b= % = ; not very close to 1 for fully developed
MVaye Pl'fau_ j‘ 1'“ :
- laminar flow.
_. o L (VY
Momentum-flux correction factor: b= A ‘ y ) dA,

i '.1._ W AvEs 18



EXAMPLE 6-1 Momentum-Flux Correction Factor
for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It
is shown in Chap. 8 that the velocity profile through a cross-sectional area of
the pipe is parabolic (Fig. 6-15), with the axial velocity component given by

1.2
V= 2Vm.2(1 - F) (1

where R is the radius of the inner wall of the pipe and V,, is the average
velocity. Calculate the momentum-flux correction factor through a cross sec-
tion of the pipe for the case in which the pipe flow represents an outlet of
the control volume, as sketched in Fig. 6-15.

Assumptions 1 The flow is incompressible and steady. 2 The control volume
slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15.
Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte-
grate, noting that dA. = 2#r dr,

1'“ A% 4
= — - d:A=_
p AL.,(VQ) ¢ 7R?

L
A

'"R l 3
r2\2
1 — —) 2ardr (2)
Jn ( R?

c

Defining a new integration variable y = 1 — r2/R? and thus dy = —2r dr/R?
(also, y=1atr=0, and y = 0 at r = R) and performing the integra-
tion, the momentum-flux correction factor for fully developed laminar flow
becomes

0 T_'J, 0 4
Laminar flow: B=—4 r yidy = —4['-} == (3)
h 3, 3
Discussion We have calculated g for an outlet, but the same result would
have been obtained if we had considered the cross section of the pipe as an

inlet to the control volume.

cv | v
[ avg 1
|—nl
R : - J‘f\
_ L A
! ./
I -

K

FIGURE 6-15

Velocity profile over a cross section
of a pipe in which the flow is fully
developed and laminar.

For turbulent flow B8 may have
an insignificant effect at inlets
and outlets, but for laminar
flow B8 may be important and
should not be neglected. It is
wise to include Bin all
momentum control volume
problems.



Steady Flow

Steady linear momentum equation: E F= E pmV — E pmV

Out 1

The net force acting on the control volume during steady flow is equal to the
difference between the rates of outgoing and incoming momentum flows.

\{H}UI
f':.f}h‘r’} In If H ﬁ’;!”q‘lq
%1/ ~
> ~
- Fixed \
/ control l

IV volume
B ”;]V Out /7/ % \ The net force acting on the
Out L XF

control volume during steady

—

BsmsVs 1341”4"4 flow is equal to the difference
- N between the outgoing and the
.3 i
EF:EB‘”'V N %B”” incoming momentum fluxes.
L I

20



Steady Flow with One Inlet and One Outlet

p I 4 — _ One inlet and o :
2 F.o=m(B,V, ., — BV, ) Along X- 9""\}; ' _}
72%20 T Pty epordinate ' L BV,
| L. -
— I |
. In ~— " ) I Support |
BimV; ! ' '
N .
Sy . .
(D\/ Fixed \ / (Reaction force)
- \ FR

/[ control . o
\ volume | F;/\‘il“” Vi
B

N\ - ”~ 7
Out 6
. >F Note: %;ﬁ ﬁ even if |?2| = |'¥_}]|

itV i,
fzm . R The determination by vector
2 F = m(B,V, —B{V)) addition of the reaction force on
A control volume with only one the support caused by a change

inlet and one outlet. of direction of water. 21



Flow with No External Forces

d(m F)m—‘ - .
No external forces: 0 = + E pmV — E BmV

{f‘r ot in

In the absence of external forces, the rate of change of the
momentum of a control volume is equal to the difference between
the rates of incoming and outgoing momentum flow rates.

= .
4§ AW
d(mV)ev = m —{”CV = (ma)ey = Moy@
T Ii':"'l.' - Mz Cv - j-C\";{
dt dt
el — . T3 .7
Fihuse = Meyad = EBF”V — EBFHV
in oul

The thrust needed to lift the space
shuttle is generated by the rocket
engines as a result of momentum

change of the fuel as it is accelerated
from about zero to an exit speed of
about 2000 m/s after combustion.

Vo = 2000 m/s




[ |
B EXAMPLE 6-2 The Force to Hold a Deflector Elbow in Place

B A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a

B horizontal pipe upward 30° while accelerating it (Fig. 6-20). The elbow dis-

B charges water into the atmosphere. The cross-sectional area of the elbow
is 113 cm? at the inlet and 7 cm? at the outlet. The elevation difference
between the centers of the outlet and the inlet is 30 cm. The weight of the
elbow and the water in it is considered to be negligible. Determine (a) the
gage pressure at the center of the inlet of the elbow and (b) the anchoring
force needed to hold the elbow in place.

SOLUTION A reducing elbow deflects water upward and discharges it to the
atmosphere. The pressure at the inlet of the elbow and the force needed to
hold the elbow in place are to be determined.

Assumptions 1 The flow is steady, and the frictional effects are negligible.
2 The weight of the elbow and the water in it is negligible. 3 The water is
discharged to the atmosphere, and thus the gage pressure at the outlet is
zero. 4 The flow is turbulent and fully developed at both the inlet and outlet
of the control volume, and we take the momentum-flux correction factor to
be B = 1.03 (as a conservative estimate) at both the inlet and the outlet.
Properties We take the density of water to be 1000 kg/m?.

Analysis (a) We take the elbow as the control volume and designate the
inlet by 1 and the outlet by 2. We also take the x- and zcoordinates as
shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-
tem is m; = m, = m = 14 kg/s. Noting that m = pAV, the inlet and outlet
velocities of water are

3 PJ'.J'.'I -
@\‘. mV,
F H.: X . = _1‘:-’-:-’1{;""_#"[_
Fpy == - =" ; 3
e = f,;f 30 cm
I :'.' r.’rii—"l =7 30 l
— -



1 14 kg/s

= = 1.24m/
pA, (1000 kg/m®)(0.0113 m?) e

VJ =

mo 14 kg/s
pA, (1000 kg/m3)(7 X 10~ *m?)

V, = = 20.0 m/s

We use the Bernoulli equation (Chap. 5) as a first approximation to calculate
the pressure. In Chap. 8 we will learn how to account for frictional losses
along the walls. Taking the center of the inlet cross section as the reference
level (z; = 0) and noting that P, = P,,,, the Bernoulli equation for a stream-
line going through the center of the elbow is expressed as

P, : P, Vi
—+t—+z=—+—+ 2
pg  2g pg 2 -
V2 — V2
P, — P, = pg T"'Eg_zl

P, — P, = (1000 kg/m*)(9.81 m/s?)

(20 m/s)* — (1.24 m/s)? 1 kN
X 5 +03 -0 (
2(9.81 m/s) 1000 kg-m/s?

P, = 202.2 kN/m* = 202.2 kPa (gage)

+ BAgE

24



(b) The momentum equation for steady flow is

Zf = ZBm? — ZBrhrf’
out in
We let the x- and z-components of the anchoring force of the elbow be Fg,
and Fp,, and assume them to be in the positive direction. We also use gage
pressure since the atmospheric pressure acts on the entire control surface.
Then the momentum equations along the x- and z-axes become

Fp + P,_EEECAJ = BmV, cos 8 — BV,
Fp. = PmV,sin @

where we have set 8 = 3, = B,. Solving for Fy, and Fg,, and substituting the
given values,

Fp = pm(V,cos8 — V) — P A,

, gage

IN
= 1.03(14 kg/s)[ (20 cos 30° — 1.24) m/s] (—2)
1 kg-m/s

— (202,200 N/m*)(0.0113 m?)

= 232 — 2285 = —2053N
IN

Fy, = BV, sin 6 = (1.03)(14 kg/s)(20 sin 30° ‘“”“(W

): 144 N

The negative result for Fp, indicates that the assumed direction is wrong,

and it should be reversed. Therefore, F, acts in the negative x-direction.

Discussion There is a nonzero pressure distribution along the inside walls of

the elbow, but since the control volume is outside the elbow, these pressures

do not appear in our analysis. The weight of the elbow and the water in it

could be added to the vertical force for better accuracy. The actual value :

of Py, gage Will be higher than that calculated here because of frictional and 25
other irreversible losses in the elbow.



]
m EXAMPLE 6-3 The Force to Hold a Reversing Elbow in Place

:The deflector elbow in Example 6-2 is replaced by a reversing elbow such

m that the fluid makes a 180° U-turn before it is discharged, as shown in
Fig. 6-21. The elevation difference between the centers of the inlet and the
exit sections is still 0.3 m. Determine the anchoring force needed to hold
the elbow in place.

SOLUTION The inlet and the outlet velocities and the pressure at the inlet
of the elbow remain the same, but the vertical component of the anchoring
force at the connection of the elbow to the pipe is zero in this case (Fz, = 0)
since there is no other force or momentum flux in the vertical direction (we
are neglecting the weight of the elbow and the water). The horizontal com-
ponent of the anchoring force is determined from the momentum equation
written in the x-direction. Noting that the outlet velocity is negative since it
Is In the negative x-direction, we have

Fpo + P| oAy = Ban(=V,y) — BV, = —Bm(V, + V)
Solving for Fg, and substituting the known values,

FEI - _JB"}I(VE + Vl} - Pl.gage‘qj

= —(1.03)(14 kg/s)[(20 + 1.24) mu"s]( — (202,200 N/m2)(0.0113 m2)

1 kg-mfsz)
= —306 — 2285 = —2591 N

Therefore, the horizontal force on the flange is 2591 N acting in the nega-

tive x-direction (the elbow is trying to separate from the pipe). This force

Is equivalent to the weight of about 260 kg mass, and thus the connectors
(such as bolts) used must be strong enough to withstand this force.

26



i : : :
m EXAMPLE 64 Water Jet Striking a Stationary Plate

|
m Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a

W stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s
(Fig. 6-22). After the strike, the water stream splatters off in all directions
in the plane of the plate. Determine the force needed to prevent the plate
from moving horizontally due to the water stream.

SOLUTION A water jet strikes a vertical stationary plate normally. The force
needed to hold the plate in place is to be determined.

Assumptions 1 The flow of water at the nozzle outlet is steady. 2 The water
splatters in directions normal to the approach direction of the water jet.

27



3 The water jet is exposed to the atmosphere, and thus the pressure of the
water jet and the splattered water leaving the control volume is atmospheric
pressure, which is disregarded since it acts on the entire system. 4 The ver-
tical forces and momentum fluxes are not considered since they have no
effect on the horizontal reaction force. 5 The effect of the momentum-flux
correction factor is negligible, and thus g = 1 at the inlet.

Analysis We draw the control volume for this problem such that it contains
the entire plate and cuts through the water jet and the support bar normally.
The momentum equation for steady flow is given as

2.’? = 23&1? — 23&1? (1)

out in
Writing Eg. 1 for this problem along the x-direction (without forgetting the
negative sign for forces and velocities in the negative x-direction) and noting

that V; , = Vyand V, , = O gives
_F.Ff = {} - ﬂﬁjv|

Substituting the given values,

F, = BV, = (1)(10 kg/s)(20 m](m) = 200 N

Therefore, the support must apply a 200-N horizontal force (equivalent to
the weight of about a 20-kg mass) in the negative x-direction (the opposite
direction of the water jet) to hold the plate in place. A similar situation
occurs in the downwash of a helicopter (Fig. 6-23).

Discussion The plate absorbs the full brunt of the momentum of the water
jet since the x-direction momentum at the outlet of the control volume is
zero. If the control volume were drawn instead along the interface between
the water and the plate, there would be additional (unknown) pressure forces
in the analysis. By cutting the control volume through the support, we avoid
having to deal with this additional complexity. This is an example of a “wise”
choice of control volume.

- 28



EXAMPLE 6-5 Power Generation and Wind Loading

of a Wind Turbine

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed B
(minimum speed for power generation) of 7 mph, at which velocity the tur-
bine generates 0.4 kW of electric power (Fig. 6-24). Determine (a) the effi-
ciency of the wind turbine—generator unit and (b) the horizontal force exerted
by the wind on the supporting mast of the wind turbine. What is the effect
of doubling the wind velocity to 14 mph on power generation and the force
exerted? Assume the efficiency remains the same, and take the density of air
to be 0.076 Ibm/ft3.

Analysis Kinetic energy is a mechanical form of energy, and thus it can
be converted to work entirely. Therefore, the power potential of the wind is
proportional to its kinetic energy, which is V2/2 per unit mass, and thus
the maximum power is mV2/2 for a given mass flow rate:

1.4667 fu/s
v, =@ mph)(—") = 1027 fus
1 mph
D2 30 frp
= p,V,A, = p,V, WT = (0.076 Ibm/fE)(10.27 fﬂs]% = 5517 Ibm/s
. V2
Wo = rike; = m —-

= (551.7 Ibm/s)

-

.:10.2?&;5)1( 1 Ibf )( 1 kW )
2 322 Ibm-ft/s?/\ 737 56 Ibf-fi/s

= 1.225 kW

Therefore, the available power to the wind turbine is 1.225 kW at the wind
velocity of /7 mph. Then the turbine—generator efficiency becomes

Wee  04kW
W = 0.327
Thwind turbine W 1225 kKW

max

(or 32.7%)

- 29



(b) The frictional effects are assumed to be negligible, and thus the portion
of incoming kinetic energy not converted to electric power leaves the wind
turbine as outgoing kinetic energy. Moting that the mass flow rate remains
constant, the exit velocity is determined to be
Vi Vi
ke, = mkey(l — Nying wviee) —> M > = M5 (1 = Myind wrbine) (1)

or

Vo = ViV1 — Dyinguamine = (10.27 ft/5)\V/1 — 0.327 = 8.43 fus

To determine the force on the mast (Fig. 6-25), we draw a control volume
around the wind turbine such that the wind is normal to the control surface
at the inlet and the outlet and the entire control surface is at atmospheric
pressure (Fig. ©-23). The momentum equation for steady flow is given as

SF =3BV — 3 v (2)
out in

Writing Eq. 2 along the x-direction and noting that 8 = 1, V; , = V|, and
Vo , =V, give

FR = ﬁjVE - ﬁflr"’l = }’.‘I'I[VE - Vl} {3}

Substituting the known values into Eqg. 3 gives

Fp =m(V, — V|) = (551.7 Ibm/s)(8.43 — 10.27 ft/s) (%)
J2.2 Ibm-it/s

= —31.51bf

The negative sign indicates that the reaction force acts in the negative
x-direction, as expected. Then the force exerted by the wind on the mast
becomes F . = —Fp = 31.5 Ibf.

The power generated is proportional to V3 since the mass flow rate is
proportional to V and the kinetic energy to V2. Therefore, doubling the wind
velocity to 14 mph will increase the power generation by a factor of 23 = 8
to 0.4 x 8 = 3.2 kW. The force exerted by the wind on the support mast
is proportional to V2. Therefore, doubling the wind velocity to 14 mph will
increase the wind force by a factor of 22 = 4 to 31.5 X 4 = 126 Ibf,
Discussion Wind turbines are treated in more detail in Chap. 14.

- 30



EXAMPLE 6-6 Deceleration of a Spacecraft

A spacecraft with a mass of 12,000 kg is dropping vertically towards a
planet at a constant speed of 800 m/s (Fig. 6-26). To slow down the
spacecraft, a solid-fuel rocket at the bottom is fired, and combustion
gases leave the rocket at a constant rate of 80 kg/s and at a velocity
of 3000 m/s relative to the spacecraft in the direction of motion of the
spacecraft for a period of 5 s. Disregarding the small change in the mass
of the spacecraft, determine (a) the deceleration of the spacecraft during
this period, (b) the change of velocity of the spacecraft, and (c) the thrust
exerted on the spacecraft.

Analysis (a) For convenience, we choose an inertial reference frame that
moves with the spacecraft at the same initial velocity. Then the velocities
of the fluid stream relative to an inertial reference frame become simply the
velocities relative to the spacecraft. We take the direction of motion of the
spacecraft as the positive direction along the x-axis. There are no external
forces acting on the spacecraft, and its mass is essentially constant. There-
fore, the spacecraft can be treated as a solid body with constant mass, and
the momentum equation in this case is, from Eq. 6-29,

Flhrust - Sp.lt‘ELFElfl \par.u'rafl E-Bmv - E-Bmv

out

where the fluid stream wvelocities relative to the inertial reference frame in
this case are identical to the velocities relative to the spacecraft. Noting
that the motion is on a straight line and the discharged gases move in the
positive x-direction, we write the momentum equation using magnitudes as

dvspa-:etmﬂ -V
M o acecraft@spacecrat — M spacecraft d — — Mgas” gas

000 m/s |
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Noting that gases leave in the positive x-direction and substituting, the
acceleration of the spacecraft during the first 5 seconds is determined to be

dv

spacecraft m oas 80 ke/s

d =— = ———V_ = ————(+3000 m/s) = —20 m/s*

spacecraft At e oas 12 OOU k o

spacecraft

The negative value confirms that the spacecraft is decelerating in the posi-
tive x direction at a rate of 20 m/s?.

(b) Knowing the deceleration, which is constant, the velocity change of the
spacecraft during the first 5 seconds is determined from the definition of
acceleration to be

dV, = dt — AV

spacecraft spa-:ccral'l

= —100 m/s

At = (—20 m/s?)(5 s)

%pacccml’l spacccml’l

(c) The thrusting force exerted on the space aircraft is, from Eq. 6-29,

1 kN
Fig =0 — mmlf;% = 0 — (80 kg/s)(+3000 mm(][}{][] I{g-[n;"sz) = —240 kN
The negative sign indicates that the trusting force due to firing of the rocket
acts on the aircraft in the negative x-direction.

Discussion Note that if this fired rocket were attached somewhere on a test
stand, it would exert a force of 240 kN (equivalent to the weight of about 24 tons
of mass) to its support in the opposite direction of the discharged gases.
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: EXAMPLE 6-7 Net Force on a Flange T Tae——_ar T T T~ -

|

~m Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-

W tially closed gate valve spigot (Fig. 6-27). The inner diameter of the pipe P,
at the location of the flange is 0.780 in (= 0.0650 ft), and the pressure
at that location is measured to be 13.0 psig. The total weight of the faucet N
assembly plus the water within it is 12.8 |bf. Calculate the net force on the
flange.
Analysis We choose the faucet and its immediate surroundings as the control
volume, as shown in Fig. 6-27 along with all the forces acting on it. These F
forces include the weight of the water and the weight of the faucet assembly, R
the gage pressure force at the inlet to the control volume, and the net force z

of the flange on the control volume, which we call F:?. We use gage pressure

=]
=
L=
L1°]
NN I NN NN I S -

[

Wfﬂucc[

Out

for convenience since the gage pressure on the rest of the control surface

is zero (atmospheric pressure). Note that the pressure through the outlet of X

the control volume is also atmospheric since we are assuming incompressible

flow; hence, the gage pressure is also zero through the outlet. FIGURE 6-27

We now apply the control volume conservation laws. Conservation of mass Control volume for Example 67
is trivial here since there is only one inlet and one outlet; namely, the mass
flow rate into the control volume is equal to the mass flow rate out of the
control volume. Also, the outflow and inflow average velocities are identical
since the inner diameter is constant and the water is incompressible, and
are determined to be

V-V —y— E_ v _ 18.5 gal/min (D.]SS? ftJ)(l min
P A wDY4  w(0.065 ft)¥4 60 s

C

with all forces shown; gage pressure
is used for convenience.

T gal ) =12.42 ft/s

Also,

0.1337 ﬁ3)( 1 min

) = 2.568 Ibm/s
60 s

m = pV = (62.3 Ibm/f)(18.5 ga]fmin](
1 gal
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Next we apply the momentum equation for steady flow,

SF =SV — > iV (1
ot in
We let the x- and z-components of the force acting on the flange be Fg, and
Fp,, and assume them to be in the positive directions. The magnitude of
the velocity in the x-direction is +V; at the inlet, but zero at the outlet. The
magnitude of the velocity in the zdirection is zero at the inlet, but —V, at
the outlet. Also, the weight of the faucet assembly and the water within it
acts in the —z-direction as a body force. No pressure or viscous forces act on
the chosen (wise) control volume in the zdirection.
The components of Eq. 1 along the x- and zdirections become

Fr. = Wineet = Wi = 1(=V,) — 0

faucet water
Solving for Fg, and Fp,, and substituting the given values,

Fpe = —mV, — PJ.gageAI

1 Ibf (0780 iny?
- —@ (1242 fus)| == ) — (13 Ibffin?) ———-
(2.568 Ibm/s)(12 .4 f”“}(jg_: ]bm-ftfsi) (13 1bt/in") 1
= —7.20 Ibf
FR-* = —r.i‘iV: + wl'nuc'el—wmcr

1 1bf
) + 128 1bf = 11.8 Ibf

= — A1 47 fifey| —0———
(2.568 Ibm/s)(12.42 fﬂs}(jzz Ibmfi/s2

Then the net force of the flange on the control volume is expressed in vector
form as

Fp=Fpi + Fpk = —720i + 11.8k Ibf

From Newton's third law, the force the faucet assembly exerts on the flange
is the negative of Fg,

—

Ffaucm on flange =

—F,=7207 — 11.8k Ibf
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6—5 m REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

Rotational motion: A motion during
which all points in the body move in
circles about the axis of rotation.

Rotational motion is described with

angular guantities such as the angular
distance 6, angular velocity », and /
angular acceleration a.

Angular velocity: The angular
distance traveled per unit time.

Angular acceleration: The rate of \ /
: \ dog VvV /
change of angular velocity. \ W= —=— /
b dt r y
do  dl/ry 1dl V - y
(i = = = - = — \..\ ,f
dt di rder g e
dow d*0 _1dV  a, The relations between angular distance 6,

N angular velocity @, and linear velocity V.

V = rw and d, = roy 35



Newton’s second law requires that there must be a force acting in the
tangential direction to cause angular acceleration.

The strength of the rotating effect, called the moment or torque, is proportional
to the magnitude of the force and its distance from the axis of rotation.

The perpendicular distance from the axis of rotation to the line of action of the
force is called the moment arm, and the torque M acting on a point mass m at
a normal distance r from the axis of rotation is expressed as

M = rF, = rma, = mra Torque Mass, m <—» Moment of inertia,
Linear acceleration, @ <— Angular acceleration, a

M = rla dm = { ’ A &n}r = la Linear velocity, V+— Angular velocity, @

“Mass “mass

Linear momentum <—— Angular momentum

| is the moment of inertia of the body mV ~— 1o

about the axis of rotation, which is a

measure of the inertia of a body F}“E“_’ Eomn;ﬁ
=ma—— M=la

against rotation.

Moment of force, IZ <+—— Moment of momentum, ﬁ

Unlike mass, the rotational inertia of Be?x i e 7% mb

a body also depends on the

distribution of the mass of the body Analogy between corresponding

with respect to. the axis:of rotation. linear and angular quantities. b



L A Angular momentum
H = J Few om = J reomiow=Iw _

-
Mass mass H — .'rli:_l

H
g5 dasy oy Angular momentum

%
M=la=1-—=——=—gquation
'[-Illlll {ilrll {!|r|'
. 27Th Angular velocit
H=rmV w = (rad/s) J y
= rm(rw) 60 Versus rpm
[ — Fzﬁ"(r_}
= Jw w = 2mn

— — —

|

\_#
Wear, = @M = 2mmnM

Angular momentum of point mass m The relations between angular
rotating at angular velocity @ at velocity, rpm, and the power
distance r from the axis of rotation. transmitted through a shatt. 37



i'"i'f;tm't = FV = Fro = Mw
HI'HH;I“ = wM = 2mnM (W)  Shaft power
KE, =3/w” Rotational kinetic energy

During rotational motion, the direction of velocity changes even when its
magnitude remains constant. Velocity is a vector quantity, and thus a change
in direction constitutes a change in velocity with time, and thus acceleration.
This is called centripetal acceleration.

V? ;
a, =— = rw"

r
Centripetal acceleration is directed toward the axis of rotation (opposite direction of
radial acceleration), and thus the radial acceleration is negative. Centripetal
acceleration is the result of a force acting on an element of the body toward the
axis of rotation, known as the centripetal force, whose magnitude is F, = mV?/r,

Tangential and radial accelerations are perpendicular to each other, and
the total linear acceleration is determined by their vector sum:

a = d, + da.
f I} 38



6—6 m THE ANGULAR MOMENTUM EQUATION

Many engineering problems involve the moment of the linear momentum of
flow streams, and the rotational effects caused by them.

Such problems are best analyzed by the angular momentum equation, also
called the moment of momentum equation.

An important class of fluid devices, called turbomachines, which include
centrifugal pumps, turbines, and fans, is analyzed by the angular

momentum equation.

!

Direction of /4\_ "~

rotation | )
Y
0/
ﬂr_f} =7 X F_}
M = Frsin®

%
The moment of a force F' about a
point O is the vector product of the
position vector 7 and F'.

A force whose line of

action passes through
point O produces zero
moment about point O.

Sense of the
moment

T

The determination
of the direction of
the moment by the
right-hand rule.

Axis of
rotation S




Moment of Moment of momentum iR

SYS d —
momentum (system) = || e T
N S I S cv cs
H=rXmV H = J (r X V)pdV
- SYs — — —
dH, 1 S B=H b=r XV b=rXV
sys _ d J (7 X V)p qv Rate of change of
e dt | moment of momentum
Angular momentum dHye g ¢ — =
S : S J (FX Vp dV
. dH,, equation for a system dt—di |,
;'11 - — —3 —5
) dt > M =2, X F) o[ X Vipll, - an
- CS
dH gy, The angular momentum equation

is obtained by replacing B in the
Reynolds transport theorem by the
angular momentum H . and b by

! [ . — ’ . — -
—— J (r X V)pdV + J (r X V)p(V,-n)dA
dt dt ov os

- = d | Lz = R S the angular momentum per unit
General: M=— (r X VypdV + ( (r X V)p(V_-n)dA S
; { E dt N P! ' PV DGR ass T X V.
‘ov ‘Cs
) ‘ ) The net flow rate of
The sum of all The time rate of change
angular momentum
external moments | = | of the angular momentum | + ¢ of ol
, out of the contro
acting on a CV of the contents of the CV
surface by mass flow
: - — d | ~ - = N
Fixed CV: > M= S| X Vipdv | (FXV)p(V - Tda e
Lol

‘ov ‘Cs



During steady flow, the amount of angular ~Specilal Cases
momentum within the control volume remains
‘constant, and thus the time rate of change of
angular momentum of the contents of the
control volume is zero.

Steady flow: 2 "Ir_;-'} = J (r X ?]p( ‘?,. - 1) dA

Cs

An approximate form of the angular

momentum equation in terms of average ' A rotating lawn
properties at inlets and outlets: sprinkler is a good

- 4 . = Lo Lo example of application
2 M = " .-{{;\.- (r XV)pdV+ % rxXmV — % rxXm) of the angular

- momentum equation.

- Steady flow: DM = DFXmV = DFXmV

The net torque acting on the control volume during steady flow is equal to the
difference between the outgoing and incoming angular momentum flow rates.

S m= S v — S v scalar form of angular _ _
out i momentum equation ol



Flow with No External Moments

No external moments: 0=

ifH(_\., . A
+ 2[} Xm‘.]— Etf'xuﬂa‘]

‘:” out in

In the absence of external moments, the rate of change of the angular
momentum of a control volume is equal to the difference between the
incoming and outgoing angular momentum fluxes.

When the moment of inertia | of the control volume remains constant,
the first term on the right side of the above equation becomes simply
moment of inertia times angular acceleration. Therefore, the control
volume in this case can be treated as a solid body, with a net torque of

M E[r X mV) — EIFKm‘L”J

body h‘ 'J‘ in out

This approach can be used to determine the angular
acceleration of space vehicles and aircraft when a rocket is
fired in a direction different than the direction of motion.
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Radial-Flow Devices

Radial-flow devices: Many rotary-flow devices such as centrifugal pumps and
fans involve flow in the radial direction normal to the axis of rotation.

Axial-flow devices are easily analyzed using the linear momentum equation.

Radial-flow devices involve large changes in angular momentum of the fluid
and are best analyzed with the help of the angular momentum equation.

Impeller
shroud

e
..i: ¥ A

Impeller
blade
Scroll
Side view Frontal view

Eye

Side and frontal views of a typical centrifugal pump.
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The conservation of mass equation for steady incompressible flow
ll.;"l] = 'L;*'g =V — 2mrb)V, , = 2mrby)V,,
vV vV

7 — . 7 —
V,, = b, and Vo p = o

b,

EM = 2 rmV — 2 4/ angular momentum

out in equatlon
. A - Euler’s turbine
[ipare = m(rVy = 1 Vi)
formula
T = m(raVosin ey — rVysin @)
When Vi, = or V,, = wr,
\\ Tahaj't. ideal — me ,r'% - ‘F%}
A
\
I i +1
: volume | 0 5 H{]Hﬂ = T.ﬂhaiﬂ = 2’_"r"Tﬁ:.]mﬂ w = 2mn
A |
\ b "“\_\' ’/ / F
\ S ‘_:""J"'__," /
k - / An annular control
N\
. /" volume that encloses
N el the impeller section of

Dttt a centrifugal pump. 44



EXAMPLE 6-8 Bending Moment Acting at the Base
of a Water Pipe

Underground water is pumped through a 10-cm-diameter pipe that consists
of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6-39.
Water discharges to atmospheric air at an average velocity of 3 m/s, and the
mass of the horizontal pipe section when filled with water is 12 kg per meter
length. The pipe is anchored on the ground by a concrete base. Determine
the bending moment acting at the base of the pipe (point A) and the required
length of the horizontal section that would make the moment at point A zero.

‘*—l m

—_—
3 m/s

2 m
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Analysis We take the entire L-shaped pipe as the control volume, and desig-
nate the inlet by 1 and the outlet by 2. We also take the x- and zcoordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m; = m; = m, and V; = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

m = pAV = (1000 kg/m*)[#(0.10 m)*/4](3 m/s) = 23.56 kg/s

IN
W= = (12k 1 m)(9.81 m/s* (—)= 1177 N
mg = (12 kg/m)(1 m)(?.61 m/s7) | kg-m/s?
To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a steady-
flow problem, and all forces and momentum flows are in the same plane.
Therefore, the angular momentum equation in this case is expressed as

EM = Enhv = zrﬁr‘r”
out in
where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
wise direction are negative.

The free-body diagram of the L-shaped pipe is given in Fig. 6-39. Noting
that the moments of all forces and momentum flows passing through point A
are zero, the only force that yields a moment about point A is the weight W
of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in
the clockwise direction). Then the angular momentum equation about point A
becomes

M__.i, - rJW == —!‘:._}G;IV:._
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Solving for M, and substituting give
Mi = rlw - rzfj’i.vz

Fa

= (0.5 — (2m)(23.5 8 ) | Y
(0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 'm"(lkg-mfsz)

= —82.5N'm

The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N.m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N-m moment on the pipe stem in the clockwise direction to counteract
the excess moment caused by the exit stream.

The weight of the horizontal pipe is w = WIL = 117.7 N per m length.
Therefore, the weight for a length of Lm is Lw with a moment arm of r, = L/2.
Setting M, = O and substituting, the length L of the horizontal pipe that
would cause the moment at the pipe stem to vanish is determined to be

O0=rW-—-—rmV, — 0=(L2)Lw — r,mV,

or

[2rmV, Xz(z m)(23.56 kg/s)(3 m/s) ( N ) .
=, |— = -~ ~] = 1L.55m
\) w \ 117.7 N/m kg-m/s-

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.
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m
m EXAMPLE 6-9 Power Generation from a Sprinkler System

m A large lawn sprinkler (Fig. 6-40) with four identical arms is to be con-
m verted into a turbine to generate electric power by attaching a generator to
its rotating head, as shown in Fig. 6-41. Water enters the sprinkler from
the base along the axis of rotation at a rate of 20 L/s and leaves the nozzles
in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a
horizontal plane. The diameter of each jet is 1 cm, and the normal distance
between the axis of rotation and the center of each nozzle is 0.6 m. Esti-
mate the electric power produced.

| Electric R -
mnux:le]"jet

generator . V i | =

Mpozzlejet .~

T. \
n shaft \
I
[']

V., A
s | N r=0.6mY
\ ’—g
A"
s

- < mnulee"’jel

o -—

: MpozaicVier |
t Mo al | nozzle¥jet

Lawn':sprinklers often have
rotating heads to spread the
~ water over a large area.



Analysis We take the disk that encloses the sprinkler arms as the control
volume, which is a stationary control volume.

The conservation of mass equation for this steady-flow system is m; = m, =
Miqia- Noting that the four nozzles are identical, we have Mg, = Miyia/4 OF

Viemle = Viota/4 since the density of water is constant. The average jet exit
velocity relative to the rotating nozzle is
'u."mn,l, 5L/s ( | m? )
V., = — = = 63.66 m/s
tr = A T [a(0.01 m)¥4] \ 1000 L e

jet

The angular and tangential velocities of the nozzles are

1 mi
w = 2 = 27 (300 rew’minj( 6mm

) = 31.42 rad/s
S

1% = rw = (0.6 m)(31.42 rad/s) = 18.85 m/s

nozzle

Note that water in the nozzle is also moving at an average velocity of
18.85 m/s in the opposite direction when it is discharged. The average abso-
lute velocity of the water jet (velocity relative to a fixed location on earth) is
the vector sum of its relative velocity (jet velocity relative to the nozzle) and
the absolute nozzle velocity,

V_ic — Vjc[,;- +V

L nozzle

All of these three velocities are in the tangential direction, and taking the
direction of jet flow as positive, the vector equation can be written in scalar
form using magnitudes as

Vi = Vi, = V

jet jet.r

= 63.66 — 18.85 = 4481 m/s

nozzle
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Noting that this is a cyclically steady-flow problem, and all forces and
momentum flows are in the same plane, the angular momentum equation
is approximated as EM = Ermv = Ermle’, where r is the moment arm,

ot in

all moments in the counterclockwise direction are positive, and all moments
in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given
in Fig. 6-41. Note that the moments of all forces and momentum flows
passing through the axis of rotation are zero. The momentum flows via the
water jets leaving the nozzles yield a moment in the clockwise direction and
the effect of the generator on the control volume is a moment also in the
clockwise direction (thus both are negative). Then the angular momentum
equation about the axis of rotation becomes

_Tﬁhﬂ“ - _4‘””nnlec1im or Tshaﬁ — ﬁ”lmalvjcl

Substituting, the torque transmitted through the shaft is

Tohat = Mg Viee = (0.6 m)(20 kg/s)(44.81 mfs](m) = 537.7 N-m
Since My, = pVipts = (1 kg/L)(20 L/s) = 20 kgls.
Then the power generated becomes
W= wT.,, = (3142 rad/s)(537.7 N-m}( LW ) = 16.9 kW
shat. = (9542 TSI, 1000 N-m/s ’

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW
of power.



Discussion To put the result obtained in perspective, we consider two lim-
iting cases. In the first limiting case, the sprinkler is stuck, and thus, the
angular velocity is zero. The torque developed is maximum in this case, since
Viozze = 0. Thus Vigy = Vgt , = 63.66 m/s, giving Tgn max = 764 N-m. The
power generated is zero since the generator shaft does not rotate.

In the second limiting case, the sprinkler shaft is disconnected from the
generator (and thus both the useful torque and power generation are zero),
and the shaft accelerates until it reaches an equilibrium velocity. Setting
Tnait = O In the angular momentum equation gives the absolute water-jet
velocity (jet velocity relative to an observer on earth) to be zero, Vi = O.
Therefore, the relative velocity Vi , and absolute velocity V.., are equal but
in opposite direction. So, the absolute tangential velocity of the jet (and thus
torque) is zero, and the water mass drops straight down like a waterfall under
gravity with zero angular momentum (around the axis of rotation). The angular
speed of the sprinkler in this case is

@ Viomte  63.66 mf's{ 60 s

n = = = : .
21T 27y 2m(0.6 m)\l min

) = 1013 rpm

Of course, the T, = O case is possible only for an ideal, frictionless nozzle (i.e.,
100 percent nozzle efficiency, as a no-load ideal turbine). Otherwise, there would
be a resisting torque due to friction of the water, shaft, and surrounding air.

The variation of power produced with angular speed is plotted in Fig. 6-42.
Note that the power produced increases with increasing rpm, reaches a maxi-
mum (at about 500 rpm in this case), and then decreases. The actual power
produced would be less than this due to generator inefficiency (Chap. 5) and
other irreversible losses such as fluid friction within the nozzle (Chap. 8),
shaft friction, and aerodynamic drag (Chap. 11).
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Power produced, kKW

n

0 200 400 600 800 1000 1200
rpm

The variation of power produced with angular
speed for the turbine of Example 6-9.
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