CMPE 321 Signals and Systems for Computer Engineers (Fall 2019)
 Final Review Sheet

CHAPTER 2 SINUSOIDS

- Amplitude A, radian frequency ω_{o}, and phase shift ϕ of a sinusoidal signal $x(t)=A \cos \left(\omega_{o} t+\phi\right)$
- Basic relationship between radian frequency ω_{0} and cyclic frequency $f_{0}\left(\omega_{0}=2 \pi f_{0}\right)$ and relationship between frequency and period T_{o} of sinusoids ($T_{\mathrm{o}}=1 / f_{\mathrm{o}}$)
- Relationship between phase shift and time shift of a sinusoid: $t_{1}=-\frac{\phi}{\omega_{o}}=-\frac{\phi}{2 \pi f_{o}}$
- Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
- Inverse Euler's formulas: $\cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right)$ and $\sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)$
- Sinusoids and complex exponential signals (rotating phasors):

$$
A \cos \left(\omega_{o} t+\phi\right)=\operatorname{Re}\left\{A e^{j\left(\omega_{o} t+\phi\right)}\right\}=\operatorname{Re}\left\{A e^{j \phi} e^{j \omega_{o} t}\right\}=\frac{1}{2} X e^{j \omega_{o} t}+\frac{1}{2} X^{*} e^{-j \omega_{o} t}
$$

with complex amplitude or phasor $X=A e^{j \phi}$

- Positive and negative frequency concept of rotating phasors
- Phasor addition and phasor diagrams
- Solve problems: P-2.7, P-2.11, P-2.15, P-2.16

CHAPTER 3 SPECTRUM REPRESENTATION

- Spectrum of a sum of sinusoids

$$
x(t)=A_{o}+\sum_{k=1}^{N} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)
$$

where A_{0} is referred to as the DC component

- Amplitude modulated (AM) sinusoidal signals or beat signals:
$x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)=2 \cos \left(2 \pi f_{\Delta} t\right) \cos \left(2 \pi f_{c} t\right)$
- Envelope of an AM signal, its carrier or center frequency $f_{c}=\frac{1}{2}\left(f_{1}+f_{2}\right)$, and its deviation frequency $f_{\Delta}=\frac{1}{2}\left(f_{2}-f_{1}\right)$
- Bandwidth of a signal, frequency-division multiplexing
- Operations on the spectrum; differentiation, time-shifting, frequency-shifting
- Frequency Modulation (FM): generating frequency variation by a time-varying angle function $\Psi(t)$:

$$
x(t)=A \cos (\Psi(t))=\operatorname{Re}\left\{A e^{j \Psi(t)}\right\}
$$

- Instantaneous frequency of an FM signal: $\omega_{i}=\frac{d}{d t} \Psi(t) \mathrm{rad} / \mathrm{s}$ or $f_{i}=\frac{1}{2 \pi} \frac{d}{d t} \Psi(t) \mathrm{Hz}$
- Linear FM signals or chirp signals: $f_{i}=2 \mu t+f_{o}$
- Spectrum of periodic signals

$$
x(t)=A_{o}+\sum_{k=1}^{N} A_{k} \cos \left(2 \pi k f_{o} t+\phi_{k}\right)=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi k f_{o} t}
$$

with fundamental frequency $f_{0}=\operatorname{gcd}\left\{f_{\mathrm{k}}\right\}$ (gcd: greatest common divisor), and harmonic frequencies

$$
f_{\mathrm{k}}=k f_{\mathrm{o}}
$$

- Properties of complex exponentials:

$$
\begin{array}{ll}
\int_{0}^{T_{o}} e^{j\left(\frac{2 \pi}{T_{o}}\right) k t} d t=0 & \text { (Integration over one period) } \\
\frac{1}{T_{o}} \int_{0}^{T_{o}} e^{j\left(\frac{2 \pi}{T_{o}}\right) k t} e^{-j\left(\frac{2 \pi}{T_{o}}\right) l t} d t= \begin{cases}0 & \text { if } k \neq l \\
1 & \text { if } k=l\end{cases} & \text { (Orthogonality) }
\end{array}
$$

- Fourier analysis of periodic signals: (a_{k} are referred to as the Fourier series coefficients)

$$
\begin{aligned}
& a_{k}=\frac{1}{T_{o}} \int_{0}^{T_{o}} x(t) e^{-j 2 \pi k f_{o} t} d t \\
& a_{0}=\frac{1}{T_{o}} \int_{0}^{T_{o}} x(t) d t
\end{aligned}
$$

- Finite Fourier synthesis formula: (approximate the signal using a_{k})

$$
x(t)=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi k f_{o} t}
$$

- Full-wave rectified sine and half-wave rectified sine signals
- The Gibbs' phenomenon
- Solve problems: P-3.1, P-3.9, P-3.11, P-3.21, P-3.22, P-3.24, P-3.27, P-C.1

CHAPTER 4 SAMPLING AND ALIASING

- Discrete-time sinusoidal signals $x[n]=A \cos (\widehat{\omega} n+\phi)$ where $\widehat{\omega}=\omega T_{s}=\omega / f_{s}$ is called normalized radian frequency or discrete-time frequency or digital frequency (f_{s} is the sampling rate)
- Aliases of a sinusoid with frequency $\widehat{\omega}_{o}: \widehat{\omega}_{o}, \widehat{\omega}_{o}+2 \pi l, \quad-\widehat{\omega}_{o}+2 \pi l$ where l is an integer
- Spectrum of a discrete-time signal
- Sampling theorem and the Nyquist rate $\left(2 f_{\max }\right)$
- Over-sampling and under-sampling
- Aliasing due to under-sampling and folding due to under-sampling
- Ideal C-to-D and D-to-C converters and A-to-D and D-to-A converters
- Reconstruction and interpolation
- Solve problems: P-4.1, P-4.3, P-4.4, P-4.7, P-4.14, P-4.26

CHAPTER 5 FIR FILTERS

- FIR systems, difference equations, FIR filter coefficients b_{k}
- Impulse response
- Convolution operation and convolution of finite-length signals using synthetic polynomial multiplication
- Linear Time-Invariant (LTI) systems, causality, superposition
- Cascaded LTI systems, block diagrams
- Solve problems: P-5.1, P-5.10, P-5.18

CHAPTER 6 FREQUENCY RESPONSE OF FIR FILTERS

- Sinusoidal response of FIR systems
- Frequency response of an FIR system: $H\left(e^{j \widehat{\omega}}\right)=\sum_{k=0}^{M} b_{k} e^{-j \widehat{\omega} k}=\sum_{k=0}^{M} h[k] e^{-j \widehat{\omega} k}$
- Magnitude and phase response, gain of a system
- $y[n]=\left|H\left(e^{j \widehat{\omega}}\right)\right| A \cos \left(\widehat{\omega} n+\phi+\angle H\left(e^{j \widehat{\omega}}\right)\right)$ when $x[n]=A \cos (\widehat{\omega} n+\phi)$
- Superposition and frequency response
- Relation of frequency response to impulse response and difference equation
- Periodicity and symmetry properties of frequency response
- Simple low-pass filters
- Cascaded LTI systems and the frequency response
- Solve problems: P-6.1, P-6.3, P-6.4, P-6.5(a),(b), P-6.8(a),(c), P-6.13, P-6.18, P-6.19, P-6.20(a)

CHAPTER 7 DISCRETE-TIME FOURIER TRANSFORM

- DTFT: $X\left(e^{j \widehat{\omega}}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \widehat{\omega} n}$
- Inverse DTFT: $x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \widehat{\omega}}\right) e^{j \widehat{\omega} n} d \widehat{\omega}$
- Basic DTFT pairs (Table 7-1)
- DTFT properties: Periodicity, linearity, conjugate symmetry, time-delay, frequency-shift, modulation, convolution (Table 7-2)
- Energy of a signal: $E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}$
- Parseval's Theorem: $\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \widehat{\omega}}\right)\right|^{2} d \widehat{\omega}$
- Autocorrelation function: $c_{x x}[n]=x[-n] * x[n]=\sum_{k=-\infty}^{\infty} x[-k] x[n-k]=\sum_{m=-\infty}^{\infty} x[m] x[n+m]$
- Frequency-selective digital filters: Ideal lowpass, highpass, and bandpass filters
- Windowing: Rectangular and Hamming Windows
- Solve problems: P-7.7(a),(b), P-7.14, P-7.15

CHAPTER 9 Z-TRANSFORMS

- Three domains of representation of signals and systems: time domain, frequency domain, z-domain
- z-transform: $X(z)=\sum_{k=0}^{N} x[k] z^{-k}$
- z-transform of an FIR filter
- System function: $H(z)=\sum_{k=0}^{M} b_{k} z^{-k}=\sum_{k=0}^{M} h[k] z^{-k}$
- Superposition and time-delay properties
- Convolution and z-transform
- Cascaded LTI systems
- $H\left(e^{j \widehat{\omega}}\right)=\left.H(z)\right|_{z=e^{j \widehat{\omega}}}$
- The z-plane, poles and zeros of $H(z)$, pole-zero plots
- Nulling filters
- Solve problems: P-9.1, P-9.2, P-9.3, P-9.4, P-9.12

CHAPTER 10 IIR FILTERS

- IIR systems and difference equations involving feedback terms
- Time-domain response and initial rest conditions
- Linearity and time-invariance of IIR filters
- Impulse response of a first-order IIR system
- System function of an IIR filter, poles and zeros, pole-zero plots
- Stability
- Frequency response of IIR filters
- Pole locations and the shape of the frequency response
- Solve problems: P-10.6, P-10.7, P-10.21, P-10.26

