
DEPARTMENT OF COMPUTER ENGINEERING

CMPE112: Programming Fundamentals

EXPERIMENT 7

Introduction to C Programming: Pointers and string

Objectives:

1) Understand how to edit, compile and execute C computer codes.

2) Understand C programming: Pointers and string

Note: Before writing a computer code, you should do the

following steps: 1) understand and analyze the problem, 2)

develop an algorithm and/or flowchart and 3) convert the

algorithm and/or the flowchart into a C code.

Part I

Write each of the following a C-code form, and show the output:

1)

int a=15;

int *b = &a;

printf(“%x %x %d\n”, b, &b, *b);

2)

int *p,

int list[]={1,2,3,4};

 p = list; /* equivalent to p = &list[0] */

 printf(“%d\n”, *p);

3)

int *p;

 int list[]={1,2,3,4};

p = list;

printf(“%d\n ”p [2])

4)

int list[] = {1, 2, 3, 4} ;

printf(“%d\n”, list[2]);

printf(“ %d\n “, *(list+2));

5)

int list[] = {1, 2, 3, 4};

int *p = list; /* same as p = &list[0] */

printf(“%x”,p); // prints the address

6)

int list[] = {1, 2, 3, 4};

int *p = list;

printf(%“ x”,p); // prints address

 p = p + 1;

printf(“%x”,p); // p must be increased by 4

7)

// sizeof() operator returns the number of needed to store a

variable or a data type

int i;

int *ptr4i = &i;

int IntArray[] = {1, 2, 3, 4, 5};

double j;

double *ptr4j = &j;

double doubleArray[] = {1.0, 2.0, 3.0, 4.0,5.0};

printf("Sizeof integer is %d bytes\n", sizeof(int));

printf("Sizeof double is %d bytes\n", sizeof(double));

printf("Sizeof i is %d bytes\n", sizeof(i));

printf("Sizeof pointer for i is %d bytes\n", sizeof(ptr4i));

printf("Sizeof j is %d bytes\n", sizeof(j));

printf("Sizeof pointer for j is %d bytes\n", sizeof(ptr4j));

printf("Sizeof intArray is %d bytes\n", sizeof(intArray));

printf("Sizeof doubleArray is %d bytes\n", sizeof(doubleArray));

Part II

1.

Given the following initializations:

int scores[] = {88, 98, 25, 53, 70, 66};

int *pscores = scores;

Write down the values of the following expressions:

a) *pscores ………………..

b) *(pscores+2) ………………..

c) pscores – scores ……………………

d) (pscores[2] + 5) ……………………

e) --*pscores ……………………

2. Trace

#include <stdio.h>

int main()

{ char *p = “ABC”;

 printf("%c\n", *(p + *p – ‘B’ + 2));

return 0;}

3. Trace

#include <stdio.h>

int findx(int nm[]);

int main()

{

int k;

int numbers[5]={4 , 7 , 5 , 1 , 9} ;

char names[5]={‘C’,’A’,’O’,’M’,’L’};

k = findx(numbers);

printf("First Arg = %d Second Arg = %c",numbers[k], names[k]);

return 0;

}

int findx(int nm[])

{

int save , ps , i;

save = nm[0];

ps = 0;

for (i=1; i<5 ; i++)

 if (nm[i] < save)

 { save = nm[i];

 ps = i;

}

printf(“\n Save value = %d and coordinate = %d “,save, ps);

return ps;

}

4)

Write a C code to do the following task: Read a series of

characters from the standard input and write them to the

standard output with the characters reversed, i.e., if the input

is Ahmet then the output will be temhA.

Part III

Some string functions defined in <string.h>

strlen (s1):Computes the length of the string s1, and returns

the number of characters that precede ‘\0’.

strcat(s1 , s2): Concatenates a copy of string s2 to the end of

the string s1;

strcpy(s1, s2):Copies the string s2 to s1.

strcmp(s1,s2):Compares the string s1 to the string s2. It

returns a negative integer value if s1 is lexicographically less

than s2, zero if s1 is equal to s2, and a positive value if s1

is lexicographically greater than s2.

strchr(s1, c) Locates the first occurrence of character c in the

string s1, and returns a pointer located character if the search

succeeds and NULL otherwise.

1.

Given the following initializations

char word1[13] = “introduction”;

char word2[14] = “toprogramming”;

char str1[9] = “computer”;

char str2[12] = “engineering”

What will be the values of the following expressions ?

a) printf(“%d”, strlen(word2)); ……………..……..

b) printf(“%s”, strncat(word1, word2, 2)); …………………....

c) printf(“%s”, strncpy(word2, “algorithms”, 9)); ……………………

d) printf(“%d”, strcmp(str1, str2)); ……………...……..

e) printf(“%s”, strcpy(str1, str2)); ……….……………

2.

Trace and list the output of the given program after entering

your name and surname as input of data string from the

monitor(gets(s)).

#include<stdio.h>

#include<string.h>

int test(void);

int i=0 ,cnt=0;

char s[20] ;

char letter[6]={"AEIOU"};

int main(void)

{

printf("ENTER Your Name and Surname, using CAPITAL letters

\n");

gets(s);

do

 if (test()) printf("%c",s[i]);

while(s[++i]!='\0');

printf("\n Total character = %d",cnt);

return 0;

}

int test(void)

{int j;

 for(j=0;j<strlen(letter);j++)

 if (s[i]==letter[j])

 {++cnt;

 return 0;

 }

 return 1;

 }

3.

Write a code that reads name and surname of a person from the

keyboard. Then, if the name is lexicographically greater than

the surname, it prints the name first and then the surname on

the monitor. Otherwise, it prints the surname first and then the

name. Note that name and surname cannot be more than 30

characters each and they are assumed to be typed in lowercase

characters.

4.

Write a C program for the following string of operation. Read a

string of data from the monitor and after calling split function

, divide the given string into two parts as first and last and

returns back to the main program.

Split function searches ‘*’ character in the given string and

copies all the characters before ‘* character into first and

copies all the remaining characters after ‘*’ into last.

Afterwards compare first and last alphabetically in the main

program and display the result as follow.

 First is greater than last

 First is less than last

 First is equal to last

Examples

Input: book*abacus

Output: alphabetically book is greater than abacus

Input: abdullah*adem

Output: alphabetically abdullah is less than adem

Input: deniz*deniz

Output: alphabetically deniz is equal to deniz

