CMPE353/CMSE354

RELATIONAL DATABASE DESIGN EXAMPLES

(Ch. 8)

Problem at hand

We will consider the following set F of functional dependencies for relation schema $R=(A, B, C, D, E)$ throughout these examples.

$$
F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}
$$

Ex. 1 Compute B $^{+}$

- Using the attribute closure algorithm below, we find that $\mathrm{B}^{+}=\mathrm{BD}$

$$
F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}
$$

```result := \alpha; while (changes to result) do{ for each }\beta->\gamma\mathrm{ in F do begin if }\beta\subseteq\mathrm{ result then result := result }\cup end } \alpha+=result```

```
result=B
result=BD
B+}=\textrm{BD
 Remember! This means that the functional dependencies \(B \rightarrow B, B \rightarrow D\) and \(B \rightarrow B D\) are all
 in F+
```


## Ex. 2 Is BC a candidate key for R?

- Using the attribute closure algorithm we find that $(B C)^{+}=A B C D E$

Since the closure contains all attributes in $R, B C$ is a superkey.

- Now, we test if any subset of $B C$, that is $B$ or $C$ is a superkey for $R$ ? If not, BC will be a candidate key.
- We already know from Ex. 1 that $\mathrm{B}^{+}=B D$, so $B$ is not a $S K$.
- Using attribute closure algoritm, we find that $\mathrm{C}^{+}=\mathrm{C}$, so C is not a SK .
- Since no subset of $B C$ is $S K, B C$ becomes the candidate key!


## Additional information.

- We can show that $A, B C, C D$, and $E$ are all candidate keys for $R$.
- Try this!

Ex. 3 Let $R 1=(A, B, C), R 2=(A, D, E)$. Is this decomposition of $R$ lossless join decomposition?

- We know that a decomposition $\{R 1, R 2\}$ is a lossless-join decomposition if $R 1 \cap R 2 \rightarrow R 1$ or $R 1 \cap R 2 \rightarrow R 2$.
(In other words if $R 1 \cap R 2$ is a superkey for R1 or R2)
- R1 $\cap R 2=A$
- We know from slide 5 , that $A$ is superkey for $R$, so it must be a superkey for any decomposition of R. (R1 and R2 in this case)
- So the decomposition is lossless join.
- Alternatively;
- Use the only functional dependency(FD) in $F$ defined over R1: $A \rightarrow B C$
- Compute $A^{+}=A B C$. Since all attributes of R1 are in $A^{+}, A$ is a SK for R1.


## Ex. 4 Is $R=(A, B, C, D, E)$ in $B C N F$ given $F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}$ ?

A relation schema $R$ is in BCNF with respect to a set $F$ of functional dependencies if for all functional dependencies in $F$ of the form

$$
\alpha \rightarrow \beta
$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

1) $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ )

OR
2) $\alpha$ is a superkey for $R$

## Ex. 4 Solution Continued

- $F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}$

We must check each FD to see if iy satisfies cond. 1 or 2.

- If they all satisfy, then $R$ is BCNF.
- Checking $A \rightarrow B C$; we know that $A$ is a SK for $R$ (slide 5 ); 2 is satisfied.
- Checking CD $\rightarrow E$; we know that CD is a SK for $R$ (slide 5); 2 is satisfied.
- Checking $B \rightarrow D ; B$ is not $S K$ and is non-trivial. Both 1 and 2 are not satisfied.
- Checking $E \rightarrow A$; we know that $E$ is a $S K$ for $R$ (slide 5 ); 2 is satisfied.

Since we found at least one FD in F which doesn't satisfy any of the conditions, we conclude that $R$ is not BCNF.

Ex. 5 Use BCNF decomposition algorithm once to decompose $R$ in Ex. 4 into R1 and R2.

- We decompose $R$ into: assume ( $\alpha \rightarrow \beta$ )
$\mathrm{R} 1=(\alpha \cup \beta), \mathrm{R} 2=(R-(\beta-\alpha))$ using the functional dependency which violates BCNF.
- In Ex. 4 B $\rightarrow$ D was the violating FD, so;
${ }^{\bullet} R 1=(\alpha \cup \beta)=(B \cup D)=(B, D)$
${ }^{\bullet} R 2=(R-(\beta-\alpha))=(A B C D E)-(D-B)=(A, B, C, E)$
- (Do not check if this decomposition is BCNF since this requires all FD in the closure of F, which we do not know!)

Ex. 6 Is $R=(A, B, C, D, E)$ in $3 N F$ given $F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}$ ?

- A relation schema $R$ is in third normal form (3NF) if for all:

$$
\alpha \rightarrow \beta \text { in } F^{+}
$$

at least one of the following holds:

1) $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$ )
2) $\alpha$ is a superkey for $R$
3) Each attribute $A$ in $\beta-\alpha$ is contained in a candidate key for $R$.
(NOTE: each attribute may be in a different candidate key)

## Ex. 6 solution continued

- We know from Ex. 4 that FDs $A \rightarrow B C, C D \rightarrow E, E \rightarrow A$ all satisfy condition 2. But the FD B $\rightarrow$ D doesn't satisfy 1 or 2 . We check if it satisfies condition 3.

3) Each attribute $A$ in $\beta-\alpha$ is contained in a candidate key for $R$

$$
\beta-\alpha=\mathrm{D}-\mathrm{B}=\mathrm{D}
$$

So we check if attribute $D$ is in any candidate key for $R$. We know that CD is a candidate key for R (slide 5). Therefore D is contained in candidate key CD. So condition 3 is satisfied.

- We conclude that R is 3 NF .
- Nevertheless we can still give a 3NF decomposition of R (Ex. 7 next)


## Ex. 7 Give a $3 N F$ decomposition of $R=(A, B, C, D, E)$ given $F=\{A \rightarrow B C, C D \rightarrow$ $E, B \rightarrow D, E \rightarrow A\}$

- A simplified version of the 3NF decomposition may be written in the following way:
- Step 1) For each FD $\alpha \rightarrow \beta$ in $F$ create a $\mathrm{Ri}=(\alpha, \beta)$
- Using every FD in F we get: R1=(ABC), R2=(CDE), R3=(BD), R4=(AE)
- Step 2) If none of the previously formed schemas contains a candidate key for R , form an additional Rj to include one of the candidate keys.
- Since several candidate keys (not just one) are included in R1, R2,R3, R4 we do not need to form an additional R5.
- Step 3) If any schema $R_{j}$ is contained in another schema $R_{k}$ previosly formed, remove schema $R_{j}$
- Here we have no such schema, so we do not remove any.
- We conclude that, $R 1=(A B C), R 2=(C D E), R 3=(B D), R 4=(A E)$ is a $3 N F$ decomposition of $R$.

Ex. 8 Given $F=\{A \rightarrow B C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}$ determine i) if attribute $C$ in $C D \rightarrow E$ is extraneous ii) if attribute $B$ in $A \rightarrow B C$ is extraneous

- We use the following tests to check for extraneous attributes:
- Left hand side attribute test:
- To test if attribute $\mathrm{A} \in \alpha$ is extraneous in $\alpha$ compute $(\{\alpha\}-\mathrm{A})+$ using the dependencies in $F$

1. check that $(\{\alpha\}-A)^{+}$contains $\beta$; if it does, $A$ is extraneous in $\alpha$

- Right hand side attribute test:
- To test if attribute $A \in \beta$ is extraneous in $\beta$

1. compute $\alpha^{+}$using only the dependencies in

$$
F^{\prime}=(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\},
$$

2. check that $\alpha^{+}$contains $A$; if it does, $A$ is extraneous in $\beta$

## Ex. 8 solution continued

i) is attribute C in $\mathrm{CD} \rightarrow \mathrm{E}$ is extraneous ?

- Apply LHS and compute CD-C= $\mathrm{D}^{+}$using F by attribute closure algorithm.
- $\mathrm{D}^{+}=\mathrm{D}$.
- Since it doesn't contain all attributes on the RHS (i.e. attribute E), we conclude that C is not extraneous.


## Ex. 8 solution continued

ii) is attribute $B$ in $A \rightarrow B C$ is extraneous?

- Apply RHS and compute $A^{+}$using $F^{\prime}$ by attribute closure algorithm.
- $F^{\prime}=\{A \rightarrow C, C D \rightarrow E, B \rightarrow D, E \rightarrow A\}$
- $A \rightarrow B C$ is replaced by $A \rightarrow C$ (i.e. Remove the attribute under test from the FD it belongs to; leave all others unchanged.
- $\mathrm{A}^{+}=A C$
- Since it doesn't contain attribute under test (i.e attribute B) we conclude that B is not extraneous.

