CMPE353/CMSE354

RELATIONAL DATABASE DESIGN EXAMPLES (Ch. 8)

Problem at hand

We will consider the following set *F* of functional dependencies for relation schema R = (A, B, C, D, E) throughout these examples.

 $F=\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$

• Using the attribute closure algorithm below, we find that B⁺=BD $F=\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$

$\begin{array}{l} \textit{result} \coloneqq \alpha; \\ \text{while (changes to \textit{result}) do{} \\ \text{for each } \beta \rightarrow \gamma \text{ in } F \text{ do} \\ \text{begin} \\ \text{if } \beta \subseteq \textit{result then} \end{array}$
$\begin{array}{c} \textit{result} \coloneqq \textit{result} \cup \gamma \\ \textbf{end} \\ \end{pmatrix} \\ \alpha^+ = \textit{result} \end{array}$

```
result=B
result=BD
```

```
B+=BD
```

Remember! This means that the functional dependencies $B \rightarrow B, B \rightarrow D$ and $B \rightarrow BD$ are all in F⁺ **Ex.2** Is BC a candidate key for R?

- Using the attribute closure algorithm we find that (BC)⁺=ABCDE Since the closure contains all attributes in R, BC is a superkey.
- Now, we test if any subset of BC, that is B or C is a superkey for R? If not, BC will be a candidate key.
 - We already know from Ex.1 that B⁺=BD, so B is not a SK.
 - Using attribute closure algoritm, we find that C⁺=C, so C is not a SK.
 - Since no subset of BC is SK, BC becomes the candidate key!

Additional information.

- We can show that *A*, *BC*, *CD*, and *E* are all candidate keys for R.
- Try this!

<u>Ex. 3</u> Let R1 = (A, B, C), R2 = (A, D, E). Is this decomposition of R lossless join decomposition?

- We know that a decomposition {R1, R2} is a lossless-join decomposition if R1 ∩ R2 → R1 or R1 ∩ R2 → R2.
 (In other words if R1 ∩ R2 is a superkey for R1 or R2)
- *R*1 ∩ *R*2=A
- We know from slide 5, that A is superkey for R, so it must be a superkey for any decomposition of R. (R1 and R2 in this case)
- So the decomposition is lossless join.
- <u>Alternatively;</u>
 - Use the only functional dependency(FD) in F defined over R1: $A \rightarrow BC$
 - Compute A⁺=ABC. Since all attributes of R1 are in A⁺, A is a SK for R1.

<u>**Ex.4</u>** Is R= (A, B, C, D, E) in BCNF given F={A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A}?</u>

A relation schema *R* is in BCNF with respect to a set *F* of functional dependencies if for all functional dependencies in *F* of the form

 $\alpha \rightarrow \beta$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

1) $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$) OR

2) α is a superkey for *R*

Ex. 4 Solution Continued

- F={A → BC, CD → E, B → D, E → A}
 We must check each FD to see if iy satisfies cond. 1 or 2.
- If they all satisfy, then R is BCNF.
 - Checking A \rightarrow BC; we know that A is a SK for R (slide 5); 2 is satisfied.
 - Checking CD \rightarrow E; we know that CD is a SK for R (slide 5); 2 is satisfied.
 - Checking B \rightarrow D; B is not SK and is non-trivial. <u>Both 1 and 2</u> are not satisfied.
 - Checking $E \rightarrow A$; we know that E is a SK for R (slide 5); 2 is satisfied.

Since we found at least one FD in F which doesn't satisfy any of the conditions, we conclude that R is not BCNF.

Ex.5 Use BCNF decomposition algorithm once to decompose R in Ex.4 into R1 and R2.

• We decompose *R* into: assume ($\alpha \rightarrow \beta$)

R1=($\alpha \cup \beta$), R2=(R-(β - α)) using the functional dependency which violates BCNF.

• In Ex.4 B \rightarrow D was the violating FD, so;

```
• R1=(\alpha \cup \beta) =(B U D)=(B,D)
```

• R2 =(R - (β - α))= (ABCDE)-(D-B)=(A,B,C,E)

Output the content of the second s

<u>**Ex.6</u>** Is R = (A, B, C, D, E) in 3NF given F={A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A}?</u>

- A relation schema *R* is in **third normal form (3NF)** if for all:
 - $\alpha \rightarrow \beta$ in F^+ at least one of the following holds:
 - 1) $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
 - 2) α is a superkey for *R*
 - 3) Each attribute A in $\beta \alpha$ is contained in a candidate key for *R*.
 - (NOTE: each attribute may be in a different candidate key)

Ex. 6 solution continued

- We know from Ex.4 that FDs A → BC, CD → E, E → A all satisfy condition 2. But the FD B → D doesn't satisfy 1 or 2. We check if it satisfies condition 3.
- 3) Each attribute A in $\beta \alpha$ is contained in a candidate key for R

 $\beta - \alpha = D - B = D$

So we check if attribute D is in any candidate key for R. We know that CD is a candidate key for R (slide 5). Therefore D is contained in candidate key CD. So condition 3 is satisfied.

- We conclude that R is 3NF.
- Nevertheless we can still give a 3NF decomposition of R (Ex.7 next)

<u>**Ex.7**</u> Give a 3NF decomposition of R=(A,B,C,D,E) given F={A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A}

- A simplified version of the 3NF decomposition may be written in the following way:
- Step 1) For each FD $\alpha \rightarrow \beta$ in F create a Ri= (α, β)
 - Using every FD in F we get: R1=(ABC), R2=(CDE), R3=(BD), R4=(AE)
- Step 2) If none of the previously formed schemas contains a candidate key for R, form an additional Rj to include one of the candidate keys.
 - Since several candidate keys (not just one) are included in R1, R2,R3, R4 we do not need to form an additional R5.
- Step 3) If any schema R_j is contained in another schema R_k previosly formed, remove schema R_i
 - Here we have no such schema, so we do not remove any
- We conclude that, R1=(ABC), R2=(CDE), R3=(BD), R4=(AE) is a 3NF decomposition of R.

<u>**Ex.8**</u> Given F={A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A} determine i) if attribute C in CD \rightarrow E is extraneous ii) if attribute B in A \rightarrow BC is extraneous

- We use the following tests to check for extraneous attributes:
- Left hand side attribute test:
- To test if attribute A ∈ α is extraneous in α compute ({α} A)⁺ using the dependencies in F
 - 1. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- Right hand side attribute test:
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\},\$
 - 2. check that α^+ contains *A*; if it does, *A* is extraneous in β

Ex. 8 solution continued

i) is attribute C in CD \rightarrow E is extraneous ?

- Apply LHS and compute CD-C=D⁺ using F by attribute closure algorithm.
- D+=D.
- Since it doesn't contain all attributes on the RHS (i.e. attribute E), we conclude that <u>C is not extraneous.</u>

Ex. 8 solution continued

ii) is attribute B in A \rightarrow BC is extraneous?

- Apply RHS and compute A⁺ using F' by attribute closure algorithm.
- $F' = \{A \rightarrow C, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
- A → BC is replaced by A → C (i.e. Remove the attribute under test from the FD it belongs to; leave all others unchanged.
- A+=AC
- Since it doesn't contain attribute under test (i.e attribute B) we conclude that <u>B is not extraneous.</u>