13.31

Shaft ' a ' in the figure has a power input of 75 lW at a speed of 1000 rpm in the counter cloclewise direction. The gears have a module of 5 mm and a 20° pressure angle x Gear 3 is idler.
a) Find the force $F_{3 b}$ that gear 3 exert's against shaft b.
b) Find the torque $T_{4 c}$ that gear 4 exerts on shaft c.
Solution:
(FAD)
First, draw the frece-body diagrams of each gear.

a)

$$
\text { a) } \begin{aligned}
& H=T \cdot w \\
& H=\frac{T \cdot 2 \pi n}{60} \rightarrow T=\frac{2 \pi n}{60} \\
& T_{a_{2}}=\frac{60(75) 10^{3}}{1000(2 \pi)}=716 \mathrm{Nm} \\
& \hline
\end{aligned}
$$

$$
\text { module }=\frac{d}{N} \rightarrow m \cdot A_{2}=d_{2}=\frac{r_{2}}{2} \rightarrow r_{2}=\frac{m N_{2}}{2}=\frac{5(17)}{2}=425 \mathrm{~mm}
$$

$$
T_{a_{2}}=F_{32}^{t} \cdot r_{2} \rightarrow F_{32}^{t}=\frac{T_{a_{2}}}{r_{2}}=\frac{716 \mathrm{Nm}}{42.5 \times 10^{-3}}=16.8 \mathrm{kN}
$$

Consider FBD of gear 3. Taking moment about point b
gives $\quad F_{23}^{t}=F_{43}^{t}$.

$$
\begin{aligned}
& F_{3 b}=-F_{b_{3}} \\
& \sum F_{x}=0 \rightarrow F_{3 b}=2 \cdot F_{23}^{t}=2(16.8) \rightarrow F_{3 b}=33.6 \mathrm{kN}
\end{aligned}
$$

b)

$$
\begin{aligned}
& d_{4}=m N_{4} \\
& 2 r_{4}=m N_{4} \Rightarrow r_{4}=\frac{m N_{4}}{2}=\frac{5(51)}{2}=127.5 \mathrm{~mm} \\
& T_{C_{4}}=F_{34}^{t} \cdot r_{4}=F_{43}^{t} \cdot r_{4}=16.8 \times 127.5 \\
& T_{c_{4}}=2,142 \mathrm{Nm} \cdot \text { c.w. }
\end{aligned}
$$

13.34

The figure shows a pair of shaft-mounted spur gears having a diametral pitch of 5 teecth/in with an 18 -tooth
 20° pinion driving a 45 - tooth gear. The horsepower input is 32 hp maximum at 1800 rpm . Find the direction and magnitude of the maximum forces acting on bearings A, B, C and D.

Solution
Given: $P=5$ terthlin. $N_{2}=18 \mathrm{~T}, N_{3}=45 \mathrm{~T}$

$$
\phi_{n}=20^{\circ}, H=32 \mathrm{hp}, n_{2}=1,800 \mathrm{rpm} .
$$

FBD of Gear 2

$$
\frac{T_{\text {in }}}{d_{2 / 2}}=\frac{33000 \mathrm{H}}{\frac{\pi d_{2} n_{2}}{12}}
$$

$$
T_{i n}=\frac{198000 \mathrm{H}}{\pi n_{2}}
$$

$$
\begin{gathered}
T_{\text {in }}=1,120 \mathrm{lbf}-\mathrm{in} \\
d_{P}=d_{2}=\frac{N_{2}}{P}=\frac{18}{5}=3.6 \mathrm{in} \quad d_{G}=d_{3}=\frac{45}{5}=9.0 \mathrm{in} \\
W_{32}^{t}=\frac{T_{\text {in }}}{d_{2} / 2}=\frac{1.120}{3.6 / 2}=622 \mathrm{lbf} \\
W_{32}^{r}=W_{32}^{t} \cdot \tan 20^{\circ}=(622) \tan 20=226 \mathrm{lbf}
\end{gathered}
$$

$$
\left.\begin{array}{l}
F_{a 2}^{t}=W_{32}^{t}=62216 f \\
F_{a 2}^{r}=W_{32}^{r}=226 \mathrm{lbf}
\end{array}\right\} \begin{aligned}
& F_{a_{2}}=\sqrt{(622)^{2}+(226)^{2}} \\
& F_{a_{2}}=662 \mathrm{lbf}
\end{aligned}
$$

Each bearing on shaft ' a ' has the same radial load of $R_{A}=R_{B}=\frac{662}{2}=331$ 1 bot.

FBD of Gear 3

$$
\begin{aligned}
& J_{\text {out }}=W_{23}^{t} \cdot r_{3} \\
& W_{23}^{t}=W_{32}^{t}=622 \mathrm{lb} \cdot \mathrm{f} \\
& W_{23}^{r}=W_{32}^{r}=226 \mathrm{lb} f
\end{aligned}
$$

$$
T_{\text {out }}=(622)(4.5)=2,799 \mathrm{lbfin} \quad F_{b 3}=F_{b 2}=662 \mathrm{lbf}
$$

$$
R_{c}=R_{p}=\frac{662}{2}=331 \mathrm{lbf}
$$

Each bearing on shaft ' b ' has the same radial load of bearing A and B. Thus, all four bearings have the same radial load of 331 lbf .

