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Chapter 4- Part 2: TIME SERIES METHODS (constant methods) 

5. TIME SERIES METHODS 

For short-term forecasting, time series methods are favored. A time series 

is simply a time-ordered list of historical data, the underlying assumption 

which is that history is a reasonable predictor of the future. There are 

several time series models and methods to choose from, including a 

constant, trend, or seasonal model, depending on the historical data and 

our understanding of the underlying process. For each model, there may be 

several forecasting methods available, including averages, moving 

averages, weighted moving average, exponential smoothing, regression, 

and even combinations of all them. Because we must recognize which 

model is appropriate for a given time series, we will discuss each model 

separately. 
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5.1. Constant Process 

The Colgate Company is one of the largest producers of toothpaste in the United States. Almost 

50 percent of their toothpaste is made at their New Jersey plant, with the rest of the production 

spread over five other plants dispersed across the country. As manager of toothpaste production, 

Ned Murphy is concerned about how much toothpaste he should produce next week. The actual 

sales figures for the last 50 weeks, obtained from the marketing department, are given in table 

4.7. The first thing Ned does is plot the data; this plot is given in figure 4.7.  

𝑑𝑡 = 𝑎 + 𝜀𝑡 
In which represents the underlying constant of the process and 𝜀𝑡 the random noise, assumed to 

be normally distributed which mean zero and variance  𝜎𝜀
2. 

Many methods are used to forecast a constant process. We will discuss using the last data point, 

an average of all data points, an average of the most recent data, and averages that count all data 

points but give more weight to the more recent points. 

We use some notations in this part: 

𝑡 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 
𝑑𝑡 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 

𝐹𝑡,𝑡:𝑘 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑚𝑎𝑑𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎ℎ𝑒𝑎𝑑 
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Table 4.7. Weekly toothpaste sales (in thousands of cases) 
Week Demand Week Demand Week Demand 

1 56 18 55 35 52 

2 46 19 52 36 48 

3 53 20 52 37 50 

4 50 21 44 38 49 

5 50 22 47 39 52 

6 52 23 57 40 48 

7 46 24 45 41 47 

8 53 25 48 42 48 

9 55 26 55 43 44 

10 46 27 50 44 43 

11 53 28 42 45 50 

12 45 29 50 46 57 

13 50 30 57 47 46 

14 49 31 51 48 44 

15 48 32 54 49 52 

16 43 33 54 50 58 

17 47 34 51     
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Figure 4.7. Weekly toothpaste sales plot 
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5.1.1 SIMPLE METHODS. One of the simplest forecasting methods is to use 

the last data point (LDP) as the forecast for the next period.  

Using LDP, the forecast for the next period will be the demand in this period. 

Notationally, it is 

𝐹𝑡,𝑡:1 = 𝑑𝑡 

For Ned, the forecast for next week’s demand would be 58, last week’s demand. 

The forecast for k weeks in the future would also be 

𝐹𝑡,𝑡:𝑘 = 𝑑𝑡 

Because constant processes should have a constant mean and estimates of future 

demand should be independent of how far in the future we look. 

The problem with LDP is the inherent random variation. If last week’s demand 

was on the high side, the forecast will be too bad. If the next demand is high, the 

forecast will be good. However, for a constant model, we assume a normally 

distributed random component, and the next demand is just as likely to be low. In 

this case, LDP will give a bad forecast. 
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To overcome this problem, we could use an average of the past data, which will make the forecast less sensitive to 

random variations. Given t periods of data, the average at time t is 

𝐷 𝑡 =
1

𝑡
 𝑑𝑖

𝑡

𝑖<1

 

The forecast for k periods in the future:   

𝐹𝑡,𝑡:1 = 𝐷 𝑡 
For the data in table 4-7, we see that  

𝐷 50 =
1

50
 𝑑𝑖

𝑡

𝑖<1

= 49.88 

Thus, the forecast for the next week (51) will be 

𝐹50,51 = 𝐷 50 = 49.88 

Because units are in thousands of cases, the forecast is 49,880 cases. 

To forecast for more than one period in the future, we would still use this number because we are using a constant 

model. Thus, the forecast for k periods in the future calculated at time T is  
𝐹𝑡,𝑡:𝐾 = 𝐷 𝑡 

The last data point and average forecasting methods could be considered extreme methods. LDP ignores all but the last 

data point, whereas the average treats very old data the same as the most recent. If the process is truly constant, an 

average is preferred because it captures the essence of the time series and tends to damp out random fluctuations. 

However, very few processes are constant over a long period of time. If the underlying processes changes, the last data 

point method will react to the change, but it will also react to random fluctuations. On the other hand, the average is 

slow to adjust to change but does not respond to random noise. Next we will examine some compromise methods. 
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t-N+1 t-N+2 t- 1 t t+1 

5.1.2. MOVING AVERAGE (MA). Rather than take an average of all data points, we might choose to 

average only some of the more recent data. This method, called a moving average, is a compromise between 

the last data point and average methods. It averages recent data to reduce the effect of random fluctuations. 

Because only recent data is used to forecast, a moving average responds to a change in the underlying 

process more quickly. Let N be the number of periods we wish to consider in the moving average. We are 

currently at period t, the moving average is given by the sum of the last N data points, or mathematically. 

𝐹𝑡,𝑡:𝑘 =
1

𝑁
𝑑𝑡;𝑁:1 + 𝑑𝑡;𝑁:2 +⋯+ 𝑑𝑡 =

1

𝑁
 𝑑𝑖

𝑡

𝑖<𝑡;𝑁:1

 

The timing of the data points in a moving average can be illustrated by the following time line: 

t-N+1 t-N+2 t- 1 t t+1 

At time t, the points t-N+1, t-N+2,…,t are included in an N-period moving average. At time t+1 is added 

and the point t-N+1 is dropped from the calculation, so the average will include t-N+2, t-N+3,…, t,t+1. 

In week 50, the five-week moving average of Colgate's sales would be 

𝐹50,51 =
𝑑46 + 𝑑47 + 𝑑48 + 𝑑49 + 𝑑50

5
=
57 + 46 + 44 + 52 + 58

5
= 51.4 

Some more forecasts (N=5) 

𝐹40,51 =
𝑑36 + 𝑑37 + 𝑑38 + 𝑑39 + 𝑑40

5
=
48 + 50 + 49 + 52 + 48

5
= 49.4 

𝐹42,51 =
𝑑38 + 𝑑39 + 𝑑40 + 𝑑41 + 𝑑42

5
=
49 + 52 + 48 + 47 + 48

5
= 48.8 

𝐹46,51 =
𝑑42 + 𝑑43 + 𝑑44 + 𝑑45 + 𝑑46

5
=
48 + 44 + 43 + 50 + 57

5
= 48.4 
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Example: table 4-8 shows the demand for a specific product from 2000 to 2010, and 4-year moving average. 

Complete forecast values 

Table 4.8. Yearly sales (in thousands of cases) 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Demand 255 252 265 248 246 260 258 261 250 258 255 

Forecast         255 252.75 254.75 253 256.25 257.25 256.75 

𝐹2003,2004 =
𝑑2000 + 𝑑2001 + 𝑑2002 + 𝑑2003

4
=
255 + 252 + 265 + 248

4
= 255 

𝐹2004,2005 =
𝑑2001 + 𝑑2002 + 𝑑2003 + 𝑑2004

4
=
252 + 265 + 248 + 246

4
= 252.75 

𝐹2005,2006 =
𝑑2002 + 𝑑2003 + 𝑑2004 + 𝑑2005

4
=
265 + 248 + 246 + 260

4
= 254.75 

𝐹2006,2007 =
𝑑2003 + 𝑑2004 + 𝑑2005 + 𝑑2006

4
=
248 + 246 + 260 + 258

4
= 253 

𝐹2007,2008 =
𝑑2004 + 𝑑2005 + 𝑑2006 + 𝑑2007

4
=
246 + 260 + 258 + 261

4
= 256.25 

𝐹2008,2009 =
𝑑2005 + 𝑑2006 + 𝑑2007 + 𝑑2008

4
=
260 + 258 + 261 + 250

4
= 257.25 

𝐹2009,2010 =
𝑑2006 + 𝑑2007 + 𝑑2008 + 𝑑2009

4
=
258 + 261 + 250 + 258

4
= 256.75 
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Of course before calculating, we must construct scatter plot of data for checking behavior 

of variable during the time. 
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Figure 4.8. Yearly sales plot 

We have constant process (there is no specific trend in data), so we can use moving 

average method for forecasting demand in future periods. 
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5.1.3. WEIGHTED MOVING AVERAGE.(WMA) The basic problem of simple moving average consists in 

assigning the same weights to all the recent data (demand) to calculate a forecast value, but it can be 

sometimes required that higher weights should be given on particular recent period’s data. 

This disadvantage can be overcome by using weighted moving average, and weighted moving average is also 

more suitable for the calculation of forecast values if there is a trend. The total weight is equal to 1, using the 

following equation. 
𝐹𝑡,𝑡:𝑘 = 𝑤𝑡;𝑁:1𝑑𝑡;𝑁:1 + 𝑤𝑡;𝑁:2𝑑𝑡;𝑁:2 +⋯+𝑤𝑡𝑑𝑡 =  𝑤𝑖𝑑𝑖

𝑡

𝑖<𝑡;𝑁:1

 

Example: From data of previous example, with 4-year weighted moving average. Complete forecast values 

𝑤1 = 0.3, 𝑤2 = 0.2, 𝑤3 = 0.1, 𝑤4 = 0.4 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Demand 255 252 265 248 246 260 258 261 250 258 255 

Forecast         252.6 251.8 257.7 252.8 256 255.7 257.8 

𝐹2003,2004 = 𝑤1𝑑2000 + 𝑤2𝑑2001 + 𝑤3𝑑2002 + 𝑤4𝑑2003 = 0.3 ∗ 255 + 0.2 ∗ 252 + 0.1 ∗ 265 + 0.4 ∗ 248 = 252.6 

𝐹2004,2005 = 𝑤1𝑑2001 + 𝑤2𝑑2002 + 𝑤3𝑑2003 + 𝑤4𝑑2004 = 0.3 ∗ 252 + 0.2 ∗ 265 + 0.1 ∗ 248 + 0.4 ∗ 246 = 251.8 

𝐹2005,2006 = 𝑤1𝑑2002 + 𝑤2𝑑2003 + 𝑤3𝑑2004 + 𝑤4𝑑2005 = 0.3 ∗ 265 + 0.2 ∗ 248 + 0.1 ∗ 246 + 0.4 ∗ 260 = 257.7 

𝐹2006,2007 = 𝑤1𝑑2003 + 𝑤2𝑑2004 + 𝑤3𝑑2005 + 𝑤4𝑑2006 = 0.3 ∗ 248 + 0.2 ∗ 246 + 0.1 ∗ 260 + 0.4 ∗ 258 = 252.8 

𝐹2007,2008 = 𝑤1𝑑2004 + 𝑤2𝑑2005 + 𝑤3𝑑2006 + 𝑤4𝑑2007 = 0.3 ∗ 246 + 0.2 ∗ 260 + 0.1 ∗ 258 + 0.4 ∗ 261 = 256 

𝐹2008,2009 = 𝑤1𝑑2005 + 𝑤2𝑑2006 + 𝑤3𝑑2007 + 𝑤4𝑑2008 = 0.3 ∗ 260 + 0.2 ∗ 258 + 0.1 ∗ 261 + 0.4 ∗ 250 = 255.7 

𝐹2009,2010 = 𝑤1𝑑2006 + 𝑤2𝑑2007 + 𝑤3𝑑2008 + 𝑤4𝑑2009 = 0.3 ∗ 258 + 0.2 ∗ 261 + 0.1 ∗ 250 + 0.4 ∗ 258 = 257.8 
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5.1.4. Determining the forecast accuracy for simple and weighted moving average methods. 

In most cases the prediction accuracy is essential in choosing an appropriate forecasting method, 

whatever method of forecasting tends to be fairly inaccurate. In order to realize it, the actual values 

must be compared with estimated forecast. 

The criteria used for evaluating the forecasting accuracy are given below. 

- Mean Absolute Deviation (MAD) determines how the forecast accuracy has safer measure. To compute a 

MAD, the sum of absolute values of the forecast errors is divided by the number of forecasts. 

𝑀𝐴𝐷 =
 𝑑𝑖 − 𝐹𝑖
𝑡
𝑖<1

𝑡
=
 𝜀𝑖
𝑡
𝑖<1

𝑡
 

- Mean Absolute Percentage Error (MAPE) is calculated as  

𝑀𝐴𝑃𝐸 = 100 ∗
 
𝑒𝑖
𝑑𝑖

𝑡
𝑖<1

𝑡
 

- Mean Square Error (MSE) is calculated as 

𝑀𝑆𝐸 =
 𝑑𝑖 − 𝐹𝑖

2𝑡
𝑖<1

𝑡
=
 𝜀𝑖

2𝑡
𝑖<1

𝑡
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Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Demand 255 252 265 248 246 260 258 261 250 258 255 

F-MA         255 252.75 254.75 253 256.25 257.25 256.75 

F-WMA         252.6 251.8 257.7 252.8 256 255.7 257.8 

Table 4.9. Forecast comparing between two methods 

Year Demand F-MA 𝜀𝑖  𝑒𝑖
𝑑𝑖

 
𝜀𝑖
2 F-WMA 𝜀𝑖  𝑒𝑖

𝑑𝑖
 

𝜀𝑖
2 

2000 255                 

2001 252                 

2002 265                 

2003 248                 

2004 246 255 9 0.03659 81 252.6 6.6 0.02683 43.56 

2005 260 252.75 7.25 0.02788 52.5625 251.8 8.2 0.03154 67.24 

2006 258 254.75 3.25 0.01260 10.5625 257.7 0.3 0.00116 0.09 

2007 261 253 8 0.03065 64 252.8 8.2 0.03142 67.24 

2008 250 256.25 6.25 0.025 39.0625 256 6 0.024 36 

2009 258 257.25 0.75 0.00291 0.5625 255.7 2.3 0.00891 5.29 

2010 255 256.75 1.75 0.00686 3.0625 257.8 2.8 0.01098 7.84 

    
  

36.25 0.14249 250.8125 
  

34.4 0.13484 227.26 

𝑀𝐴𝐷

=
 𝑑𝑖 − 𝐹𝑖
𝑡
𝑖<1

𝑡

=
 𝜀𝑖
𝑡
𝑖<1

𝑡
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𝑀𝐴𝐷𝑀𝐴 =
 𝑑𝑖 − 𝐹𝑖
𝑡
𝑖<1

𝑡
=
 𝜀𝑖
𝑡
𝑖<1

𝑡
=
36.25

7
= 5.17 

𝑀𝐴𝑃𝐸𝑀𝐴 = 100 ∗
 
𝑒𝑖
𝑑𝑖

𝑡
𝑖<1

𝑡
=
0.142488

7
= 2.0355 

𝑀𝑆𝐸𝑀𝐴 =
 (𝑑𝑖 − 𝐹𝑖)

2𝑡
𝑖<1

𝑡
=
 (𝜀𝑖)

2𝑡
𝑖<1

𝑡
=
250.8125

7
= 35.83 

𝑀𝐴𝐷𝑊𝑀𝐴 =
 𝑑𝑖 − 𝐹𝑖
𝑡
𝑖<1

𝑡
=
 𝜀𝑖
𝑡
𝑖<1

𝑡
=
34.4

7
= 4.91 

𝑀𝐴𝑃𝐸𝑊𝑀𝐴 = 100 ∗
 
𝑒𝑖
𝑑𝑖

𝑡
𝑖<1

𝑡
=
0.134843

7
= 1.9263 

𝑀𝑆𝐸𝑊𝑀𝐴 =
 (𝑑𝑖 − 𝐹𝑖)

2𝑡
𝑖<1

𝑡
=
 (𝜀𝑖)

2𝑡
𝑖<1

𝑡
=
227.26

7
= 32.466 

Table shows the values of error for 4-week simple moving average, and 4-week weighted moving average. 

  4-week simple 

moving average 

4-week weighted 

moving average 

𝑀𝐴𝐷 5.17 4.91 

𝑀𝐴𝑃𝐸 2.0355 1.9263 

𝑀𝑆𝐸 35.83 32.466 

Forecasting using 4-week weighted moving average method is better than 4-week simple moving 

average since the weighted moving average provides smaller standard errors. 
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5.1.5. SIMPLE EXPONENTIAL SMOOTHING. Suppose we want to calculate an N period moving 

average but no longer know 𝑑𝑇;𝑁:1, which is needed in the update formula. Our only choice is to estimate 

it. 

𝐹𝑡,𝑡:𝑘 = 𝛼𝑑𝑡 + 1 − 𝛼 𝐹𝑡;1,𝑡 

From the equation we see that α is the weight given to the most recent observation, so that a large weight 

will make the forecast more sensitive to the most recent data point. A smaller value will give more weight 

to an “average” value.  

To implement exponential smoothing at time t, we need a value for 𝐹𝑡;1,𝑡. Although there are many way to 

estimate 𝐹𝑡;1,𝑡, we discuss about two of them: 

1. Simple method: The simplest is to average several past data points (assume N=5). 

Example: 

Consider the data in table 4.7. Averaging the demand from weeks 45 to 49 gives  

𝐹49,50 =
𝑑45 + 𝑑46 + 𝑑47 + 𝑑48 + 𝑑49

5
=
50 + 57 + 46 + 44 + 52

5
= 49.8 

𝐹𝑡,𝑡:𝑘 = 𝛼𝑑𝑡 + (1 − 𝛼)𝐹𝑡;1,𝑡→ 𝐹50,51 = 0.2𝑑50 + (1 − 0.2)𝐹49,50= 0.2 ∗ 58 + 0.8 ∗ 49.8

= 51.4 

2. Regular method: Determination of the initial smoothed value to be set for the future forecast. The 

determination process becomes more difficult if we are dealing with many observations. Normally the 

initial smoothed value is taken equal to the first demand of observations. 
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Consider the data in table 4.7. 

𝐹50,51 = 0.2𝑑50 + (1 − 0.2)𝐹49,50= 0.2 ∗ 58 + 0.8 ∗ 48.71200511 = 50.56960409 

𝐹49,50 = 0.2𝑑49 + (1 − 0.2)𝐹48,49= 0.2 ∗ 52 + 0.8 ∗ 47.89000639 = 48.71200511 

𝐹48,49 = 0.2𝑑48 + (1 − 0.2)𝐹47,48= 0.2 ∗ 44 + 0.8 ∗ 48.86250799 = 47.89000639 

𝐹47,48 = 0.2𝑑47 + (1 − 0.2)𝐹46,47= 0.2 ∗ 46 + 0.8 ∗ 49.57813499 = 48.86250799 

𝐹46,47 = 0.2𝑑46 + (1 − 0.2)𝐹45,46= 0.2 ∗ 57 + 0.8 ∗ 47.72266874 = 49.57813499 

𝐹45,46 = 0.2𝑑45 + (1 − 0.2)𝐹44,45= 0.2 ∗ 50 + 0.8 ∗ 47.15333592 = 47.72266874 

𝐹44,45 = 0.2𝑑44 + (1 − 0.2)𝐹43,44= 0.2 ∗ 43 + 0.8 ∗ 48.1916699 = 47.15333592 

𝐹43,44 = 0.2𝑑43 + (1 − 0.2)𝐹42,43= 0.2 ∗ 44 + 0.8 ∗ 49.23958738 = 48.1916699 

𝐹42,43 = 0.2𝑑42 + (1 − 0.2)𝐹41,42= 0.2 ∗ 48 + 0.8 ∗ 49.54948422 = 49.23958738 

𝐹41,42 = 0.2𝑑41 + (1 − 0.2)𝐹40,41= 0.2 ∗ 47 + 0.8 ∗ 50.18685527 = 49.54948422 

𝐹40,41 = 0.2𝑑40 + (1 − 0.2)𝐹39,40= 0.2 ∗ 48 + 0.8 ∗ 50.73356909 = 50.18685527 

𝐹39,40 = 0.2𝑑39 + (1 − 0.2)𝐹38,39= 0.2 ∗ 52 + 0.8 ∗ 50.41696136 = 50.73356909 

𝐹38,39 = 0.2𝑑38 + (1 − 0.2)𝐹37,38= 0.2 ∗ 49 + 0.8 ∗ 50.7712017 = 50.41696136 

𝐹37,38 = 0.2𝑑37 + (1 − 0.2)𝐹36,37= 0.2 ∗ 50 + 0.8 ∗ 50.96400212 = 50.7712017 

𝐹36,37 = 0.2𝑑36 + (1 − 0.2)𝐹35,36= 0.2 ∗ 48 + 0.8 ∗ 51.70500265 = 50.96400212 

𝐹35,36 = 0.2𝑑35 + (1 − 0.2)𝐹34,35= 0.2 ∗ 52 + 0.8 ∗ 51.63125331 = 51.70500265 

𝐹34,35 = 0.2𝑑34 + (1 − 0.2)𝐹33,34= 0.2 ∗ 51 + 0.8 ∗ 51.78906664 = 51.63125331 

𝐹33,34 = 0.2𝑑33 + (1 − 0.2)𝐹32,33= 0.2 ∗ 54 + 0.8 ∗ 51.2363333 = 51.78906664 

𝐹32,33 = 0.2𝑑32 + (1 − 0.2)𝐹31,32= 0.2 ∗ 54 + 0.8 ∗ 50.54541662 = 51.2363333 

𝐹31,32 = 0.2𝑑31 + (1 − 0.2)𝐹30,31= 0.2 ∗ 51 + 0.8 ∗ 50.43177077 = 50.54541662 

𝐹30,31 = 0.2𝑑30 + (1 − 0.2)𝐹29,30= 0.2 ∗ 57 + 0.8 ∗ 48.78971346 = 50.43177077 

𝐹29,30 = 0.2𝑑29 + (1 − 0.2)𝐹28,29= 0.2 ∗ 50 + 0.8 ∗ 48.48714182 = 48.78971346 
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𝐹28,29 = 0.2𝑑28 + (1 − 0.2)𝐹27,28= 0.2 ∗ 42 + 0.8 ∗ 50.10892728 = 48.48714182 

𝐹27,28 = 0.2𝑑27 + (1 − 0.2)𝐹26,27= 0.2 ∗ 50 + 0.8 ∗ 50.1361591 = 50.10892728 
𝐹26,27 = 0.2𝑑26 + (1 − 0.2)𝐹25,26= 0.2 ∗ 55 + 0.8 ∗ 48.92019888 = 50.1361591 

𝐹25,26 = 0.2𝑑25 + (1 − 0.2)𝐹24,25= 0.2 ∗ 48 + 0.8 ∗ 49.1502486 = 48.92019888 
𝐹24,25 = 0.2𝑑24 + (1 − 0.2)𝐹23,24= 0.2 ∗ 45 + 0.8 ∗ 50.18781075 = 49.1502486 

𝐹23,24 = 0.2𝑑23 + (1 − 0.2)𝐹22,23= 0.2 ∗ 57 + 0.8 ∗ 48.48476344 = 50.18781075 
𝐹22,23 = 0.2𝑑22 + (1 − 0.2)𝐹21,22= 0.2 ∗ 47 + 0.8 ∗ 48.8559543 = 48.48476344 

𝐹21,22 = 0.2𝑑21 + (1 − 0.2)𝐹20,21= 0.2 ∗ 44 + 0.8 ∗ 50.06994287 = 48.8559543 

𝐹20,21 = 0.2𝑑20 + (1 − 0.2)𝐹19,20= 0.2 ∗ 52 + 0.8 ∗ 49.58742859 = 50.06994287 
𝐹19,20 = 0.2𝑑19 + (1 − 0.2)𝐹18,19= 0.2 ∗ 52 + 0.8 ∗ 48.98428574 = 49.58742859 

𝐹18,19 = 0.2𝑑18 + (1 − 0.2)𝐹17,18= 0.2 ∗ 55 + 0.8 ∗ 47.48035717 = 48.98428574 
𝐹17,18 = 0.2𝑑17 + (1 − 0.2)𝐹16,17= 0.2 ∗ 47 + 0.8 ∗ 47.60044646 = 47.48035717 

𝐹16,17 = 0.2𝑑16 + (1 − 0.2)𝐹15,16= 0.2 ∗ 43 + 0.8 ∗ 48.75055808 = 47.60044646 
𝐹15,16 = 0.2𝑑15 + (1 − 0.2)𝐹14,15= 0.2 ∗ 48 + 0.8 ∗ 48.9381976 = 48.75055808 

𝐹14,15 = 0.2𝑑14 + (1 − 0.2)𝐹13,14= 0.2 ∗ 49 + 0.8 ∗ 48.922747 = 48.9381976 
𝐹13,14 = 0.2𝑑13 + (1 − 0.2)𝐹12,13= 0.2 ∗ 50 + 0.8 ∗ 48.65343375 = 48.922747 

𝐹12,13 = 0.2𝑑12 + (1 − 0.2)𝐹11,12= 0.2 ∗ 45 + 0.8 ∗ 49.56679219 = 48.65343375 
𝐹11,12 = 0.2𝑑11 + (1 − 0.2)𝐹10,11= 0.2 ∗ 53 + 0.8 ∗ 48.70849024 = 49.56679219 

𝐹10,11 = 0.2𝑑10 + (1 − 0.2)𝐹9,10= 0.2 ∗ 46 + 0.8 ∗ 49.3856128 = 48.70849024 

𝐹9,10 = 0.2𝑑9 + (1 − 0.2)𝐹8,9= 0.2 ∗ 55 + 0.8 ∗ 47.982016 = 49.3856128 
𝐹8,9 = 0.2𝑑8 + (1 − 0.2)𝐹7,8= 0.2 ∗ 53 + 0.8 ∗ 46.72752 = 47.982016 

𝐹7,8 = 0.2𝑑7 + (1 − 0.2)𝐹6,7= 0.2 ∗ 46 + 0.8 ∗ 46.5344 = 46.72752 
𝐹6,7 = 0.2𝑑6 + (1 − 0.2)𝐹5,6= 0.2 ∗ 52 + 0.8 ∗ 45.168 = 46.5344 

𝐹5,6 = 0.2𝑑5 + (1 − 0.2)𝐹4,5= 0.2 ∗ 50 + 0.8 ∗ 43.96 = 45.168 
𝐹4,5 = 0.2𝑑4 + (1 − 0.2)𝐹3,4= 0.2 ∗ 50 + 0.8 ∗ 53.8 = 43.96 

𝐹3,4 = 0.2𝑑3 + (1 − 0.2)𝐹2,3= 0.2 ∗ 53 + 0.8 ∗ 54 = 53.8 
𝐹2,3 = 0.2𝑑2 + (1 − 0.2)𝐹1,2= 0.2 ∗ 46 + 0.8 ∗ 56 = 54 

𝐹1,2 = 𝑑1 = 56 
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Example: table represents the actual demand over the years 2012-2016. Forecast demand of 2017 with simple 

exponential smoothing method by two ways. Assume that N=3, 𝛼 = 0.3. Assume that real demand of 2017 will be 

1425. Which method is better? Why? 

year 2012 2013 2014 2015 2016 

demand 1467 1500 1436 1395 1400 

First way: 

𝐹2015,2016 =
𝑑2013 + 𝑑2014 + 𝑑2015

3
=
1500 + 1436 + 1395

3
= 1443 

𝐹𝑡,𝑡:𝑘 = 𝛼𝑑𝑡 + (1 − 𝛼)𝐹𝑡;1,𝑡→ 𝐹2016,2017 = 0.3𝑑2016 + (1 − 0.3)𝐹2015,2016
= 0.3 ∗ 1400 + 0.7 ∗ 1443 = 𝟏𝟒𝟑𝟎. 𝟏 

Second way: 

𝐹𝑡,𝑡:𝑘 = 𝛼𝑑𝑡 + (1 − 𝛼)𝐹𝑡;1,𝑡 

𝐹2016,2017 = 0.3𝑑2016 + (1 − 0.3)𝐹2015,2016= 0.3 ∗ 1400 + 0.7 ∗ 1443.741 = 𝟏𝟒𝟑𝟎. 𝟔𝟏𝟖𝟕 
𝐹2015,2016 = 0.3𝑑2015 + (1 − 0.3)𝐹2014,2015= 0.3 ∗ 1395 + 0.7 ∗ 1464.63 = 1443.741 

𝐹2014,2015 = 0.3𝑑2014 + (1 − 0.3)𝐹2013,2014= 0.3 ∗ 1436 + 0.7 ∗ 1476.9 = 1464.63 
𝐹2013,2014 = 0.3𝑑2013 + (1 − 0.3)𝐹2012,2013= 0.3 ∗ 1500 + 0.7 ∗ 1467 = 1476.9 

𝐹2012,2013 = 𝑑2012 = 1467 

First way is better (because of  lower difference) 


