Chapter 3

Probability

Sample space: The set of all possible outcomes of an experiment is called the sample space.
Example:

- In one gender survey: sample space: $S=[M, F]$
- Selecting one person: sample space: $S=[M, F]$
- Flipping a coin: sample space: $S=[H, T]$
- Rolling a dice: sample space: $S=[1,2,3,4,5,6]$
- Rolling two dice:
sample space:

$$
S=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

Event: any set of outcomes of a sample space is called an event
Example: After rolling two dice, we are interested to reach sum of the two dice is equal to 5 , find the members of this event?

$$
S=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

$A=$ sum of the two dice is equal to $5=\{(1,4),(2,3),(3,2),(4,1)\}$
$\boldsymbol{A} \cup \boldsymbol{B}$: is called the union of events A and B to consist of all outcomes that are in A or in B or in both A and B.
$\boldsymbol{A} \cap \boldsymbol{B}$: is called intersection of events A and B to consist of all outcomes that are both in A and B.

Null event: the event without any outcomes. (\varnothing)
Exclusive (Disjoint) events: If the intersection of A and B is null event then we say that A and B are disjoint or mutually exclusive.

Complement of an event like A will occur when A does not occur or the set of outcomes that donot A.

Complement of $\mathrm{A}=A^{c}$

Example: in an experiment we roll a dice. We are interested to know about:
$S=$ Sample space- $A=$ even numbers- $B=$ odd numbers- $C=b i g g e r$ than $3-D=$ smaller than or equal to 5

Find members of every event and also $A \cap B, B \cup C, A \cup(B \cap C),(A \cup B)^{C},(B \cap C)^{C}$
$S=\{1,2,3,4,5,6\}$
$A=\{2,4,6\}$
$B=\{1,3,5\}$
$C=\{4,5,6\}$
$D=\{1,2,3,4,5\}$
$A \cap B=\{\varnothing\}$
$B \cup C=\{1,3,4,5,6\}$
$A \cup(B \cap C)=\left\{\begin{aligned} B \cap C & =\{5\} \\ A \cup(B \cap C) & =\{2,4,5,6\}\end{aligned}\right.$
$(A \cup B)^{C}=\left\{\begin{array}{c}A \cup B=\{1,2,3,4,5,6\} \\ (A \cup B)^{C}=\{\varnothing\}\end{array}\right.$
$(B \cap C)^{C}=\left\{\begin{array}{c}B \cap C=\{5\} \\ (B \cap C)^{C}=\{1,2,3,4,6\}\end{array}\right.$
Example: A fair dice is rolled once and a fair coin is flipped once.

- Find members of event that either the dice will land on 3 and that the coin will land on heads?
- Find members of event that either the dice will land on 3 or that the coin will land on heads?
$S=\{(1, H),(2, H),(3, H),(4, H),(5, H),(6, H),(1, T),(2, T),(3, T),(4, T),(5, T),(6, T)\}$
$A=$ dice will land on 3 and the coin will land on heads $=\{(3, H)\}$
$B=$ dice will land on 3 or the coin will land on heads

$$
=\{(1, H),(2, H),(3, H),(4, H),(5, H),(6, H),(3, T)\}
$$

Probability: The word probability is commonly used term that relates to the chances that a particular event will occur when some experiments are performed.

An experiment is any process that produces an observation or outcome,

$$
\text { Probability }=\frac{\text { Number of Favorite Outcomes }}{\text { Number of Possible Outcomes }}
$$

Properties of probability

1- $0 \leq P(A) \leq 1 \quad \forall A$
2- $P(S)=1$, where s is sample space
3- If intersection of A and B is empty $(A \cap B=\varnothing)$

$$
\begin{aligned}
& A \cup A^{C}=S \rightarrow P\left(A \cup A^{C}\right)=1 \\
& P\left(A^{C}\right)=1-P(A) \\
& P(\emptyset)=0 \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad \forall A, B \\
& P(A \cup B)=P(A)+P(B) \quad A, B \text { are disjoint } \\
& P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) \\
& \quad=\sum_{i=1}^{n} P\left(A_{i}\right) \quad A_{1}, A_{2}, \ldots, A_{n} \text { are disjoint }
\end{aligned}
$$

Example: If A and B are disjoint events and $P(A)=0.2 \& P(B)=0.5$
Find: $P\left(A^{c}\right) \quad P(A \cup B) \quad P(A \cap B) \quad P\left(A^{c} \cap B\right)$
$P\left(A^{c}\right)=1-P(A)=1-0.2=0.8$
$P(A \cup B)=P(A)+P(B)=0.2+0.5=0.7$
$P(A \cap B)=0$
$P\left(A^{c} \cap B\right)=P(B)=0.5$

Example: Ali has 40% chance of receiving A grade in statistics, 50% chance of receiving A in physics and 86% chance of receiving A in etther statistics and physics.

Find the probability that he

- Does not receive A in statistics
- Receive A in statistics or physics
$A=$ Receiving A grade in statistics $\rightarrow \mathrm{P}(\mathrm{A})=0.4$
$B=$ Receiving A in physics $\rightarrow \mathrm{P}(\mathrm{B})=0.5$
$P(A \cap B)=0.86$
$P\left(A^{c}\right)=1-P(A)=1-0.4=0.6$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.4+0.5-0.86=0.04$

Example: suppose two dice are rolled. Find the probability that the sum of dices is 6

$$
S=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

$$
A=\text { sum of dices is } 6=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}
$$

$$
\text { Probability }=\frac{\text { Number of Favorite Outcomes }}{\text { Number of Possible Outcomes }}
$$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{5}{36}
$$

Example: A man has 10 keys to open 10 doors. Find the probability that

- The first key opens a chosen door
- All of 10 keys are tried

$A=$ first key opens a chosen door
$P(A)=\frac{n(A)}{n(S)}=\frac{1}{10}$
$B=$ All of 10 keys are tried
$P(B)=\frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{6}{7} \times \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2}=\frac{1}{10}$

Conditional probability:

We are often interested in determining probabilities when some partial information concerning the outcomes of the experiment is available. In such situations the probabilities are called conditional probabilities.
Assume that A and B are two events, $P(A / B)=$ Probability of A given $B=\frac{P(A \cap B)}{P(B)}$
Example: consider rolling two dice

- What is the probability that there will be at least one 6 in outcomes?
- We know that the summation is 8 , now what is the probability that we have at least one 6?
- We know that the difference is 2 , now what is the probability that we have exact one 2?

$$
S=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

$A=$ at least one 6 in outcomes

$$
=\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
$$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{11}{36}
$$

$$
B=\text { summation is } 8=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}
$$

$$
C=\text { exact one } 2=\{(1,2),(2,1)(2,3),(2,4),(2,5),(2,6),(3,2),(4,2),(5,2),(6,2)\}
$$

$$
A \cap B=\{(2,6),(6,2)\}
$$

$$
P(A / B)=\text { Probability of } A \text { given } B=\frac{P(A \cap B)}{P(B)}=\frac{n(A \cap B / n(S)}{n(B) / n(S)}=\frac{2 / 36}{5 / 36}=\frac{2}{5}
$$

$$
D=\text { difference is } 2=\{(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)\}
$$

$$
C \cap D=\{(2,4),(4,2)\}
$$

$$
P(C / D)=\text { Probability of } C \text { given } D=\frac{P(C \cap D)}{P(D)}=\frac{n(C \cap D) / n(S)}{n(D) / n(S)}=\frac{2 / 36}{8 / 36}=\frac{2}{8}=\frac{1}{4}
$$

