Multiplication rule:

$$
P(A \cap B)=P(A) \cdot P(B / A)=P(B) \cdot P(A / B)
$$

Example: suppose that 2 people are randomly chosen from a group of 4 women and 6 men.

- What is the probability that both are women?
- What is the probability that one is woman and one is man?
$W_{i}=$ ith member is woman
$M_{i}=$ ith member is man
$P\left(W_{1} \cap W_{2}\right)=P\left(W_{1}\right) P\left(W_{2} / W_{1}\right)=\frac{4}{10} \times \frac{3}{9}=\frac{12}{90}=\frac{2}{15}$
$P\left(W_{1} \cap M_{2}\right)+P\left(M_{1} \cap W_{2}\right)=P\left(W_{1}\right) P\left(M_{2} / W_{1}\right)+P\left(M_{1}\right) P\left(W_{2} / M_{1}\right)=\frac{4}{10} \times \frac{6}{9}+\frac{6}{10} \times \frac{4}{9}=\frac{8}{15}$

Independency:

- Events A and B are independent, $P(A \cap B)=P(A) \cdot P(B)$
- Then $P(A / B)=P(A) \& P(B / A)=P(B)$
- If $A_{1}, A_{2}, \ldots, A_{n}$ are independent, then
- $\quad P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2}\right), \ldots P\left(A_{n}\right)$

Example: A couple is planning to have children, assume that each child is equally likely to be of either gender and the gender of the children is independent. Find the probability that:

- All three children will be girl?
- At least one child will be girl?
$G_{i}=$ ith child is girl, $B_{i}=$ ith child is boy
$P($ All three children will be girl $)=P\left(G_{1} \cap G_{2} \cap G_{3}\right)=P\left(G_{1}\right) \times P\left(G_{2}\right) \times P\left(G_{3}\right)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$ $P($ At least one child will be girl $)=1-P($ No girl $)=1-\left(P\left(B_{1}\right) \times P\left(B_{2}\right) \times P\left(B_{3}\right)\right)$

$$
=1-\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)=\frac{7}{8}
$$

Example: A game club has 120 members, 40 members play chess, 56 members Play Bridge, 26 members play both chess \& bridge.
If a member of the club is randomly chosen, find the conditional probability that he or she

- Plays chess given that he or she plays bridge?
- Plays bridge given that he or she plays chess?
$n(S)=120$
$C=$ Chess player $\rightarrow n(C)=40$
$B=$ Bridg player $\rightarrow n(B)=56$
$n(B \cap C)=26$

$$
P(C / B)=\frac{P(B \cap C)}{P(B)}=\frac{n(B \cap C) / n(S)}{n(B) / n(S)}=\frac{26 / 120}{56 / 120}=\frac{13}{28}
$$

$$
P(B / C)=\frac{P(B \cap C)}{P(C)}=\frac{n(B \cap C) / n(S)}{n(C) / n(S)}=\frac{26 / 120}{40 / 120}=\frac{13}{20}
$$

Remark

Contribution of n things taken r

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

It represents the number of different groups of size r that can be selected from a set of size n when the order of selection is not important.

Note:

- $\binom{n}{r}=\binom{n}{n-r}$
$0!=1$
$\binom{n}{1}=\frac{n!}{1!(n-1)!}=\frac{n \times(n-1) \times(n-2) \ldots \times 1}{1!\times(n-1)(n-2) \ldots \times 1}=n$

Example: How many different groups of size 3 can be chosen from a set of 6 people? groups of size 3 from a set of 6 people $=\binom{6}{3}=\frac{6!}{3!(6-3)!}=\frac{6 \times 5 \times 4 \times 3!}{3 \times 2 \times 3!}=20$

Example: A committee of 4 people is selected randomly from a group of 5 men and 7 women.

- What is the probability that the committee will consist of 2 men and 2 women?
probability that the committee will consist of 2 men and 2 women $=\frac{\binom{5}{2} \times\binom{ 7}{2}}{\binom{12}{4}}=\frac{14}{33}$

Example: if 4 workers are assigned to 4 jobs,

- How many different assignments are possible?
- How many assignments are possible if workers $1 \& 2$ are both able to do jobs 1 \& 2 and workers $3 \& 4$ are able to do jobs $3 \& 4$?

Possible assignments $=4 \times 3 \times 2 \times 1=24$
possible assignments if workers $1 \& 2$ able to do jobs $1 \& 2$ and workers $3 \& 4$ able to do jobs $3 \& 4$ $=2 \times 1 \times 2 \times 1=4$
Example: A delivery company has 12 trucks which 4 of them have faulty brakes, if an inspector randomly chosen 2 trucks for brake check,

- What is the probability that none of them has faulty brake?
probability that none of them has faulty brake $=\frac{\binom{4}{0} \times\binom{ 8}{2}}{\binom{12}{2}}=\frac{14}{33}$

Chapter 5

Discrete random variable

Random variable: is a function that associates a real number with each element in the sample space.

Discrete Random Variable: A random variable whose possible values constitute a sequence of disjoint on the number line.

$$
\sum_{i=1}^{n} P\left(X=x_{i}\right)=1
$$

Example: suppose that X is a random variable that takes one of the values 1,2 , or 3 . If $P(X=1)=0.4 \& P(X=2)=0.25$, what is the $P(X=3)$?
$P(X=1)+P(X=2)+P(X=3)=1 \rightarrow 0.4+0.25+P(X=3)=1 \rightarrow P(X=3)=0.35$

Example: A shipment of parts contains 10 items of which 2 are defective. Two of these items are randomly chosen and inspected, let X denote the number of defectives. Find the probability of all possible values of X and probability mass function of X.

x_{i}	0	1	2
$P\left(X=x_{i}\right)$	$28 / 45$	$16 / 45$	$1 / 45$
$P(X=0)=\frac{\binom{2}{0} \times\binom{ 8}{2}}{\binom{10}{2}}=\frac{28}{45}$	$P(X=1)=\frac{\binom{2}{1} \times\binom{ 8}{1}}{\binom{10}{2}}=\frac{16}{45} \quad P(X=2)=\frac{\binom{2}{2} \times\binom{ 8}{0}}{\binom{10}{2}}=\frac{1}{45}$		

Probability Mass Function $=$ P. M. F $=\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\binom{2}{x} \times\binom{ 8}{2-x}}{\binom{10}{2}} \quad x=0,1,2$
Example: A supervisor in a manufacturing plant has three men and three women working for him. He wants to choose two workers for a special job. Not wishing to show any biases in his selection, he decides to select the two workers at random. Let Y denote the number of women in his selection. Find the probability mass function of Y .

y_{i}	0	1	2
$P\left(Y=y_{i}\right)$	$3 / 15$	$9 / 15$	$3 / 15$

$P(Y=0)=\frac{\binom{3}{0} \times\binom{ 3}{2}}{\binom{6}{2}}=\frac{3}{15} \quad P(Y=1)=\frac{\binom{3}{1} \times\binom{ 3}{1}}{\binom{6}{2}}=\frac{9}{15} \quad P(Y=2)=\frac{\binom{3}{2} \times\binom{ 3}{0}}{\binom{6}{2}}=\frac{3}{15}$
Probability Mass Function $=$ P.M.F $=\mathrm{P}(\mathrm{Y}=\mathrm{y})=\frac{\binom{3}{y} \times\binom{ 3}{2-y}}{\binom{6}{2}} \quad y=0,1,2$

Expectation value of a discrete random variable

If X is discrete random variable having a probability mass function $P\left(X=x_{l}\right)$, then

$$
E(X)=\sum_{i=1}^{n} x_{i} p\left(X=x_{i}\right)
$$

Example: in rolling a fair dice, where X is the side facing up, find $E(X)$?

x_{i}	1	2	3	4	5	6
$P\left(X=x_{i}\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
$x_{i} P\left(X=x_{i}\right)$	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	$6 / 6$

$$
E(X)=\sum_{i=1}^{n} x_{i} p\left(X=x_{i}\right)=1 / 6+2 / 6+3 / 6+4 / 6+5 / 6+6 / 6=21 / 6
$$

Properties of expectation value:

- $\quad E(c X)=c . E(X) \quad \mathrm{x}$ is random variable and c is constant value
- $\quad E(X+c)=c+E(X)$
- $\quad E(X \pm Y)=E(X) \pm E(Y) \quad \mathrm{X} \& Y$ are random variables
- $E\left[\sum_{i=1}^{n} x_{i}\right]=\sum_{i=1}^{n} E\left(x_{i}\right)$

Example: Suppose that a radio contains six transistors, two of which are defective. Three transistors are selected at random, removed from the radio, and inspected. Let Y equal the number of defectives observed, where $Y=0,1$, or 2 . Find the expected value for Y.

y_{i}	0	1	2
$P(Y=y)$	$4 / 20$	$12 / 20$	$4 / 20$
$y_{i} P(Y=y)$	0	$12 / 20$	$8 / 20$

$P(Y=0)=\frac{\binom{2}{0} \times\binom{ 4}{3}}{\binom{6}{3}}=\frac{4}{20} \quad P(Y=1)=\frac{\binom{2}{1} \times\binom{ 4}{2}}{\binom{6}{3}}=\frac{12}{20} \quad P(Y=2)=\frac{\binom{2}{2} \times\binom{ 4}{1}}{\binom{6}{3}}=\frac{4}{20}$
$E(Y)=\sum_{i=1}^{n} y_{i} p\left(Y=y_{i}\right)=0+12 / 20+8 / 20=1$
Example: Roll a dice. If the side that comes up is odd, you win the \$ equivalent of that side. If it is even, you lose $\$ 4$. Find expected value of earning?

x_{i}	1	3	5	-4
$P\left(X=x_{i}\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$3 / 6$
$x_{i} P\left(X=x_{i}\right)$	$1 / 6$	$3 / 6$	$5 / 6$	$-12 / 6$

$$
E(X)=\sum_{i=1}^{n} x_{i} p\left(X=x_{i}\right)=1 / 6+3 / 6+5 / 6-12 / 6=-1 / 2
$$

