## Fundamental sampling distribution and data description

## Measures of location: Mean, Median

Mean: The mean is simply a numerical average. Suppose that the observation in a sample with size $n$, are $x_{1}, x_{2}, \ldots, x_{n}$, the sample mean denoted by $\bar{X}$. If mean belongs to the population, we denoted it by $\mu$.

Sample mean $=\bar{X}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\sum_{i=1}^{n} \frac{x_{i}}{n}$, Population mean $=\mu=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N}=\sum_{i=1}^{N} \frac{x_{i}}{N}$
Median (measure of central tendency ): The middle number (in a sorted list of numbers).
To find the Median, place the numbers you are given in value order and find the middle number.

$$
\tilde{X}=\left\{\begin{array}{cl}
x_{\frac{n+1}{2}}^{2} & \text { if } n \text { is odd } \\
\frac{1}{2}\left[x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right] & \text { if } n \text { is even }
\end{array}\right.
$$

Example: Find $\bar{X}$ and $\tilde{X}$ of these values, $5,7,3,2,8 \rightarrow 2,3,5,7,8$
$\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{2+3+5+7+8}{5}=5, \tilde{X}=x_{\frac{n+1}{2}}=5$
Example: Find $\bar{X}$ and $\tilde{X}$ of these values, 5, 7, 3, 2, 8, 11 $\rightarrow 2,3,5,7,8,11$
$\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{2+3+5+7+8+11}{6}=7.2, \quad \tilde{X}=\frac{1}{2}\left[x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right]=\frac{5+7}{2}=6$

## Measures of variability: Range, Variance, Standard Deviation

Sample variability plays an important role in data analysis. Process and product variability is a fact in engineering and scientific systems.

Range $=R=x_{\text {max }}-x_{\text {min }}$,
Sample Variance: $S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{X}\right)^{2}}{n-1} \quad$ Population Variance: $\sigma^{2}=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{N}$
Example: Find $R, S^{2}$, and $S$ of these values, 23, 41, 18, 37, 54, 73, 38, 29

$$
\rightarrow 18,23,29,37,38,41,54,73
$$

Range $=R=x_{\max }-x_{\text {min }}=73-18=55$,
$\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{18+23+29+37+38+41+54+73}{8}=42.5$
$S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{X}\right)^{2}}{n-1}$
$=\frac{(18-42.5)^{2}+(23-42.5)^{2}+(29-42.5)^{2}+(37-42.5)^{2}+(38-42.5)^{2}+(41-42.5)^{2}+(54-42.5)^{2}+(73-42.5)^{2}}{7}$
$=325.4286$
$S=\sqrt{S^{2}}=\sqrt{325.4286}=18.04$

## Mode:

The sample mode is the most frequently occurring value in a sample

Example: Find mode of these values: 1, 1, 2, 2, 3, 4, 6, 9, 11, 11, 11, 11, 12, 15, 20, $21 \rightarrow$ Mode $=11$
Note: If instead of using the actual values of the data, we want to use a frequency table to calculate the mean, median, and variance, we can use the following formulas to calculate their estimates.
$\bar{X}=\frac{\sum_{i=1}^{k} x_{i} f_{i}}{\sum_{i=1}^{k} f_{i}}, \quad S^{2}=\sum_{i=1}^{k} \frac{\left(x_{i}-\bar{X}\right)^{2} f_{i}}{k-1}$
In these formulas, $x_{i}$ is the midpoint for interval of i
Example: Use data of 50 passengers from chapter 1, calculate exact and estimated values of mean, median, and variance and discuss about symmetric type of histogram.
$8,4,6,3,7,3,7,5,4,8,3,7,15,16,15,8,4,4,3,3,9,5,12,8,7,5,9,3,8,9,22,10,3,37,7$, $6,8,3,5,16,4,15,3,12,6,8,12,12,3,5$

| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
| 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 |
|  | 7 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 16 | 16 |


| Interval | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl | $3-7.8$ | $7.8-12.6$ | $12.6-17.4$ | $17.4-22.2$ | $22.2-27$ | $27-31.8$ | $31.8-36.6$ | $36.6-41.4$ |
| $x_{i}$ | 5.4 | 10.2 | 15 | 19.8 | 24.6 | 29.4 | 34.2 | 39 |
| $f_{i}$ | 28 | 15 | 5 | 1 | 0 | 0 | 0 | 1 |
| $x_{i} f_{i}$ | 151.2 | 153 | 75 | 19.8 | 0 | 0 | 0 | 39 |
| $x_{i}-\bar{x}$ | -2.7 | 2.1 | 6.9 | 11.7 | 16.5 | 21.3 | 26.1 | 30.9 |
| $\left(x_{i}-\bar{X}\right)^{2} f_{i}$ | 204.12 | 66.15 | 238.05 | 136.89 | 0 | 0 | 0 | 954.81 |

Exact $\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{3+3+\cdots+37}{50}=\frac{405}{50}=8.1$, Exact $\tilde{X}=\frac{1}{2}\left[x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right]=\frac{7+7}{2}=7$
Exact $S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{X}\right)^{2}}{n-1}=\frac{(3-8.1)^{2}+(3-8.1)^{2}+(3-8.1)^{2}+\cdots+(37-8.1)^{2}}{49}=\frac{1774.5}{49}=36.21$
Estimated $\bar{X}=\frac{\sum_{i=1}^{n} x_{i} f_{i}}{\sum_{i=1}^{n} f_{i}}=\frac{438}{50}=8.76$, Estimated $\tilde{X}=\frac{1}{2}\left[x_{\text {mid }}+x_{\text {mid }+1}\right]=\frac{19.8+24.6}{2}=22.2$
Estimated $S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{X}\right)^{2} f_{i}}{n-1}=\frac{204.12+66.15+238.05+136.89+954.81}{49}=32.65$
Exact value of $\bar{x}$ is greater than exact value of $\hat{x}$, but estimated value of $\bar{x}$ is smaller than estimated value of $\hat{x}$. our decision should be according to comparing exact values.so our histogram is skewed to the right or positively skewed

## Chapter 6

## Discrete and continuous distributions

## Binomial distribution

A binomial random variable with parameters n and p represents the number of success with probability p independently. If X is such a random variable, then

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

## Expectation value and variance of binomial distribution:

If X is a discrete binomial random variable with parameters n and p , then

$$
E(X)=n p \quad \operatorname{var}(X)=n p(1-p)=n p q
$$

Example: suppose you will be attending 6 hockey games. If each game independently will go to overtime with probability 0.1 , find the probability that:

- At least one of the games will go to the overtime
- At most one of the games will go into overtime

$$
\begin{aligned}
& p(x \geq 1)=1-p(x=0)=1-\binom{6}{0} 0.1^{0}(1-0.1)^{6-0}=0.4686 \\
& p(x \leq 1)=p(x=0)+p(x=1)=\binom{6}{0} 0.1^{0}(1-0.1)^{6-0}+\binom{6}{1} 0.1^{1}(1-0.1)^{6-1} \\
& =0.5314+0.3543=0.8857
\end{aligned}
$$

Example: A fair dice is to be rolled 20 times, find the expected value and variance of the number of times:

- 6 appears
- 5 or 6 appears
- An odd number appears
$A=6$ appears, $B=5$ or 6 appears, $C=A n$ odd number appears

$$
\begin{array}{ll}
E(A)=n p_{A}=20 * 1 / 6=20 / 6, & V(A)=n p_{A} q_{A}=20 * 1 / 6 * 5 / 6=100 / 36 \\
E(B)=n p_{B}=20 * 2 / 6=40 / 6, & V(B)=n p_{B} q_{B}=20 * 2 / 6 * 4 / 6=160 / 36 \\
E(C)=n p_{C}=20 * 3 / 6=60 / 6, & V(C)=n p_{C} q_{C}=20 * 3 / 6 * 3 / 6=180 / 36
\end{array}
$$

Example: At a certain airport, $70 \%$ of the flights arrive on time. A sample of 10 flights is studied. Find

- Probability that exactly 8 flights were on time
- Probability that less than or equal to 8 flights were on time

$$
p=0.7, n=10
$$

$p(x=8)=\binom{10}{8} 0.7^{8}(1-0.7)^{10-8}=0.233$
$p(x \leq 8)=1-p(x>8)=1-[p(x=9)+p(x=10)]$

$$
\begin{aligned}
& =1-\left[\binom{10}{9} 0.7^{9}(1-0.7)^{10-9}+\binom{10}{10} 0.7^{10}(1-0.7)^{10-10}\right]=1-0.149 \\
& =0.851
\end{aligned}
$$

## Hypergeometric distribution

(Binomial distribution in which the trials are not independent)
The probability distribution of the hyper geometric random variable is the number of success in a random sample of size $n$ selected from $N$ items of which $k$ are labeled success and $N-k$ labeled failure.
If $X$ is such a random variable, then

$$
H(X, N, n, k)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}} \quad x=0,1, \ldots, k
$$

## Expectation value and variance of Hypergeometric distribution:

If $X$ is a discrete hyper geometric random variable with parameters n and p , then

$$
E(X)=\frac{n k}{N} \quad \operatorname{var}(X)=\left(\frac{N-n}{N-1}\right) \frac{n k}{N}\left(1-\frac{k}{N}\right)=\left(\frac{N-n}{N-1}\right) n p q
$$

Example: Draw 6 cards from a deck without replacement. What is the probability of getting two hearts?
$X=$ getting two hearts, $\quad \mathrm{n}=6, \mathrm{k}=13, \mathrm{~N}=52, \quad p(x=2)=\frac{\binom{13}{2}\binom{52-13}{6-2}}{\binom{52}{6}}=0.31513$
Example: A crate contains 50 light bulbs of which 5 are defective and 45 are not. A Quality Control Inspector randomly samples 4 bulbs without replacement. Let $X=$ the number of defective bulbs selected. Find the probability mass function, $f(x)$, of the discrete random variable $X$.
$x=$ the number of defective bulbs $, \quad \mathrm{n}=4, \mathrm{k}=5, \mathrm{~N}=50, \mathrm{x}=0,1,2,3,4$
$p(x=0)=\frac{\binom{5}{0}\binom{50-5}{4-0}}{\binom{50}{4}}=0.6469, \quad p(x=1)=\frac{\binom{5}{1}\binom{50-5}{4-1}}{\binom{50}{4}}=0.3081$
$p(x=2)=\frac{\binom{5}{2}\binom{50-5}{4-2}}{\binom{50}{4}}=0.04298, p(x=3)=\frac{\binom{5}{3}\binom{50-5}{4-3}}{\binom{50}{4}}=0.001954$
$p(x=4)=\frac{\binom{5}{4}\binom{50-5}{4-4}}{\binom{50}{4}}=0.0000217, \quad p(X=x)=\left\{\begin{array}{cl}\frac{\binom{5}{x}\binom{45}{4-x}}{\binom{50}{4}} & x=0,1,2,3,4 \\ 0 & \text { otherwise }\end{array}\right.$

## Poisson distribution

A random variable $X$ has Poisson distribution with parameter $\lambda$, if probability mass function of that random variable is:

$$
p(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2, \ldots
$$

## Expectation value and variance of Poisson distribution:

If $X$ is a discrete Poisson random variable with parameter $\lambda$, then

$$
E(X)=\operatorname{var}(X)=\lambda
$$

Example: If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks.

- calculate the probability that there will not be more than one failure during a particular week.
- Find expectation and variance of electricity power failures during a particular week
$\lambda=\frac{3}{20}=0.15$ failures every week
$p(X \leq 1)=p(X=0)+p(X=1)=\frac{e^{-0.15} 0.15^{0}}{0!}+\frac{e^{-0.15} 0.15^{1}}{1!}=0.98951$
$E(X)=\operatorname{var}(X)=0.15$
Note: Poisson random variable arise approximations to Binomial random variable, if the number of trials is large and probability of success is small $(\lambda=n p)$

Example: the probability of producing a defective item is 0.1.

- What is the probability that a sample of 10 items will contain at most 1 defective item?
- What is the Poisson approximation for this probability?
$p=0.1, n=10$
$p(x \leq 1)=p(x=0)+p(x=1)=\left[\binom{10}{0} 0.1^{0}(1-0.1)^{10-0}+\binom{10}{1} 0.1^{1}(1-0.1)^{10-1}\right]$

$$
=0.7361
$$

$\lambda=n p=10 * 0.1=1$
$p(x \leq 1)=p(x=0)+p(x=1)=\left[\frac{e^{-1} 1^{0}}{0!}+\frac{e^{-1} 1^{1}}{1!}\right]=0.7358$

## Geometric distribution

Suppose that repeated independent Bernoulli trials each one having probability of success $P$ are to be performed. Let $X$ be the number of trials needed until the first success occurs. We say that $X$ follows the geometric probability distribution with parameter $p$. Probability mass function of X
$p(X=x)=(1-p)^{x-1} p \quad x=1,2, \ldots$

## What are the Differences between the Geometric and the Binomial Distributions?

- The most obvious difference is that the Geometric Distribution does not have a set number of observations, $n$.
- The second most obvious is the question being asked:

Binomial: asks for the probability of a certain number of success
Geometric: asks for the probability of the first success

## Expectation value and variance of Gmetric distribution:

If $X$ is a discrete geometric random variable with parameters $X$ and $p$, then

$$
E(X)=\frac{1}{p} \quad \operatorname{var}(X)=\frac{1-p}{p^{2}}=\frac{q}{p^{2}}
$$

Example: If a production line has a $20 \%$ defective rate.

- What is the probability that first defective comes in third selection?
- What is the average number of inspections to obtain the first defective?
$p=0.2$
$p(X=x)=(1-p)^{x-1} p \rightarrow p(X=3)=(1-0.2)^{3-1} 0.2=0.128$
$E(X)=\frac{1}{p}=\frac{1}{0.2}=5$


## Uniform distribution

The density function of continuous uniform random variable X on the interval $[A, B]$ is

$$
f(X, A, B)=\left\{\begin{array}{lc}
\frac{1}{B-A} & A \leq X \leq B \\
0 & \text { otherwise }
\end{array}\right.
$$



## Expectation value and variance of Uniform distribution:

If $X$ is a continuous uniform random variable in interval of $A$ and $B$, then

$$
E(X)=\frac{A+B}{2} \quad \operatorname{var}(X)=\frac{(B-A)^{2}}{12}
$$

Example: Suppose that X is a Uniform R.V over the interval ( 0,2 ). Find

- $p(x>1 / 3)=$
- $p(0.3 \leq X \leq 0.9)=$
- $E(X) \&$ Variance $(X)$
$p(X>1 / 3)=\int_{1 / 3}^{2} \frac{1}{2} d x=\frac{1}{2} x \left\lvert\, \frac{2}{1 / 3}=\frac{1}{2}\left(2-\frac{1}{3}\right)=\frac{5}{6}\right.$
$p(0.3<X<0.9)=\int_{0.3}^{0.9} \frac{1}{2} d x=\left.\frac{1}{2} x\right|_{0.3} ^{0.9}=\frac{1}{2}(0.9-0.3)=0.3$
$E(X)=\frac{A+B}{2}=\frac{0+2}{2}=1 \quad \operatorname{var}(X)=\frac{(B-A)^{2}}{12}=\frac{(2-0)^{2}}{12}=\frac{1}{3}$


## Exponential distribution

The Random Variable $X$ has an exponential distribution with parameter $\lambda$, if it's density function is given by

$$
f(X)=\left\{\begin{array}{lr}
\lambda e^{-\lambda x} & x>0, \lambda>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

## Expectation value and variance of Exponential distribution:

If X is a continuous Exponential random variable with parameters x and $\lambda$, then

$$
E(X)=\frac{1}{\lambda} \quad \operatorname{var}(X)=\frac{1}{\lambda^{2}}
$$

Example: If jobs arrive every 15 seconds on average, $\lambda=4$ per minute,

- what is the probability of waiting less than or equal to 30 seconds

$$
p(x \leq 30)=\int_{0}^{30} 15 e^{-15 x} d x=\int_{0}^{0.5} 4 e^{-4 x} d x=-\left.e^{-4 x}\right|_{0} ^{0.5}=1-e^{2}=0.86
$$

Example: Accidents occur with a Poisson distribution at an average of 4 per week. i.e. $\lambda=4$

- Calculate the probability of more than 5 accidents in any one week
- What is the probability that at least two weeks will pass between accident?

$$
\begin{aligned}
p(x>5)=1 & -p(x \leq 5) \\
& =1 \\
& -[p(x=5)+p(x=4)+p(x=3)+p(x=2)+p(x=1)+p(x=0)] \\
& =1-\left[\frac{e^{-4} 4^{5}}{5!}+\frac{e^{-4} 4^{4}}{4!}+\frac{e^{-4} 4^{3}}{3!}+\frac{e^{-4} 4^{2}}{2!}+\frac{e^{-4} 4^{1}}{1!}+\frac{e^{-4} 4^{0}}{0!}\right]=1-0.7851 \\
& =0.2149 \\
& p(x>2)=\int_{2}^{\infty} 4 e^{-4 x} d x=-\left.e^{-4 x}\right|_{2} ^{\infty}=\frac{1}{e^{8}}=0.00034
\end{aligned}
$$

