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Chapter 8 

One and two sample estimation problems 

We know that statistical engineering consists of two categories 

1- Descriptive statistics 

2- Inferential statistics 

In previous chapters, we collected information about first part by some methods for 

presenting and showing results. 

Our methods are Frequency, Relative Frequency, Frequency Table, Bar Graph, Line Graph, 

Pie Graph, and Histogram … 

İn second part (Inferential Statistics), we will talk about finding point estimator and 

constructing confidence interval for parameters of one or two population and also 

hypothesis testing in different situations. 

İn this part, there is one population with some fix parameters like mean 𝜇, variance 𝜎2, 

standard deviation 𝜎. Because of different reasons, we have only one sample with size n 

from that population and by statistics of this sample we want to reach parameter point 

estimator (Peer to Peer) 

Point estimator: point estimator of population parameter like 𝜃 is a single value like 𝜃 that 

calculates from a sample. For example the value of �̅� (mean value of a sample) is a point 

estimator of 𝜇. similarly, �̂� =
𝑥

𝑛
 is a point estimator of the true proportation P for a binomial 

experiment. 

Unbiased estimator: a statistics  𝜃 is to be unbiased estimator of the parameter 𝜃, if 

𝐸(𝜃) = 𝜃. Also biasedness is 𝑏(𝜃) = 𝐸(𝜃) − 𝜃. 

Example: if x has the binomial distribution with parameters n and p, show the sample 

proportion of 𝑥 𝑛⁄  is an unbiased estimator of p. 

𝐸 (
𝑥

𝑛
) =

1

𝑛
𝐸(𝑥) =

𝑛𝑝

𝑛
= 𝑝 

Example: a sample of n independent observations (𝑥1, 𝑥2, … , 𝑥𝑛) taken. Under what 

condition �̂� = ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1  will be an unbiased estimator of the mean of the population? 

𝐸(�̂�) = 𝜇 

𝐸 (∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

) = ∑ 𝐸(𝑎𝑖𝑥𝑖)

𝑛

𝑖=1

= ∑ 𝑎𝑖𝐸(𝑥𝑖)

𝑛

𝑖=1

= ∑ 𝑎𝑖

𝑛

𝑖=1

𝜇  𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝜇 → ∑ 𝑎𝑖 = 1

𝑛

𝑖=1
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Variance of a point estimator 

- İf 𝜃1 and 𝜃2 are two unbiased estimators of the same population parameter 𝜃, we 

want to choose the estimator whose sampling distribution has the smaller variance. 

hence, if 𝜎�̂�1

2 < 𝜎�̂�2

2 , we say that 𝜃1 is more efficient estimator of 𝜃 than 𝜃2 

- İf we consider all possible unbiased estimators of some parameter 𝜃, the one with 

the smallest variance is called the most efficient estimator of 𝜃 

 

𝜃1, 𝜃2, and 𝜃3, all estimating 𝜃. İt is clear that only 𝜃1 and 𝜃2 are unbiased, since their distributions 

are centered at 𝜃. The estimator 𝜃1 has a smaller variance than 𝜃2 and is therefore more efficient. 

hence, our choice for an estimator of 𝜃, amoung the three considered, would be 𝜃1. 

Properties of expectation value: 

- 𝐸(𝑐𝑋) = 𝑐. 𝐸(𝑋)      x is random variable and c is constant value 

- 𝐸(𝑋 + 𝑐) = 𝑐 + 𝐸(𝑋) 

- 𝐸(𝑋 ± 𝑌) = 𝐸(𝑋) ± 𝐸(𝑌)     X & Y are random variables 

𝐸 [∑ 𝑥𝑖

𝑛

𝑖=1

] = ∑ 𝐸(𝑥𝑖)

𝑛

𝑖=1

 

Properties of variance: 

- 𝑣𝑎𝑟(𝑐𝑋) = 𝑐2. 𝑣𝑎𝑟(𝑋)      x is random variable and c is constant value 

- 𝑣𝑎𝑟(𝑋 + 𝑐) = 𝑣𝑎𝑟(𝑋) 

- 𝑣𝑎𝑟(𝑋 ± 𝑌) = 𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑌)     X & Y are independent random variables 

- 𝑣𝑎𝑟[∑ 𝑥𝑖
𝑛
𝑖=1 ] = ∑ 𝑣𝑎𝑟(𝑥𝑖)

𝑛
𝑖=1       

- 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷)𝑜𝑓 𝑋 = √𝑣𝑎𝑟(𝑋) 

Example: if 𝑥1, 𝑥2, 𝑎𝑛𝑑𝑥3 constitute a random sample size of n=3 from a normal population with the 

mean 𝜇 and the variance 𝜎2. Assume that 𝜃1, 𝜃2, 𝜃3 are estimators  

𝜃1 =
𝑥1 + 𝑥2 + 𝑥3

2
               𝜃2 =

𝑥1 + 2𝑥2 + 𝑥3

4
               𝜃3 =

𝑥1 + 𝑥2 + 𝑥3

3
   

- Which one is an unbiased estimator of 𝜇? 

- Calculate biasness of bias point estimator? 

- Find which one is more efficient? 



38 
 

𝐸(𝜃1) = 𝐸 (
𝑥1 + 𝑥2 + 𝑥3

2
) =

1

2
𝐸(𝑥1 + 𝑥2 + 𝑥3) =

1

2
(𝐸(𝑥1) + 𝐸(𝑥2) + 𝐸(𝑥3)) =

1

2
(𝜇 + 𝜇 + 𝜇) =

3𝜇

2
≠ 𝜇

→ 𝜃1 𝑖𝑠 𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

𝑏𝑖𝑎𝑠𝑛𝑒𝑠𝑠 =  𝐸(�̂�) − 𝜃 = 3𝜇

2
− 𝜇 =

𝜇

2
  

𝐸(𝜃2) = 𝐸 (
𝑥1 + 2𝑥2 + 𝑥3

4
) =

1

4
𝐸(𝑥1 + 2𝑥2 + 𝑥3) =

1

4
(𝐸(𝑥1) + 2𝐸(𝑥2) + 𝐸(𝑥3)) =

1

4
(𝜇 + 2𝜇 + 𝜇)

=
4𝜇

4
= 𝜇 → 𝜃2 𝑖𝑠 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

𝐸(𝜃3) = 𝐸 (
𝑥1 + 𝑥2 + 𝑥3

3
) =

1

3
𝐸(𝑥1 + 𝑥2 + 𝑥3) =

1

3
(𝐸(𝑥1) + 𝐸(𝑥2) + 𝐸(𝑥3)) =

1

3
(𝜇 + 𝜇 + 𝜇) =

3𝜇

3
= 𝜇

→ 𝜃3 𝑖𝑠 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

𝑉(𝜃2) = 𝑉 (
𝑥1 + 2𝑥2 + 𝑥3

4
) =

1

16
𝑉(𝑥1 + 2𝑥2 + 𝑥3) =

1

16
(𝑉(𝑥1) + 4𝑉(𝑥2) + 𝑉(𝑥3))

=
1

16
(𝜎2 + 4𝜎2 + 𝜎2) =

6𝜎2

16
 

𝑉(𝜃3) = 𝑉 (
𝑥1 + 𝑥2 + 𝑥3

3
) =

1

9
𝑉(𝑥1 + 𝑥2 + 𝑥3) =

1

9
(𝑉(𝑥1) + 𝑉(𝑥2) + 𝑉(𝑥3)) =

1

9
(𝜎2 + 𝜎2 + 𝜎2)

=
3𝜎2

9
=

𝜎2

3
                 𝑉(𝜃3) <  𝑉(𝜃2) → 𝜃3 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡        

Example: If 𝑥1, 𝑥2, 𝑥3, 𝑥4 constitute a random sample size of  𝑛 = 4 from a normal population 
with the mean 𝜇 and the variance 𝜎2. 

𝜃1 =
3𝑥1 + 3𝑥2 + 3𝑥3 − 3𝑥4

6
 ,        𝜃2 =

2𝑥1 + 2𝑥2 + 2𝑥3 − 𝑥4

6
,         𝜃3 =

2𝑥1 + 2𝑥2 − 2𝑥2 + 3𝑥4

5
 

- Which one is/are unbiased point estimator of 𝜇? .  
- Calculate biaseness of biased point estimator of 𝜇.  
- Which one is more efficient estimator of 𝜇? Why? .  

 

 

Confidence interval 

There are many situations in which it is preferable to determine an interval within which we would 

expect to find the value of the parameter. Such an interval is called an interval estimate 

Interpretation of interval estimates: 

Since different samples will generally yield different values of 𝜃 and, therefore, different values 

for 𝜃𝐿  𝑎𝑛𝑑 𝜃𝑈, these end points of the interval are values of corresponding random variables 

𝜃𝐿 𝑎𝑛𝑑 𝜃𝑈. İf for instance, we find 𝜃𝐿 𝑎𝑛𝑑 𝜃𝑈 such that 

𝑃(𝜃𝐿 < 𝜃 < 𝜃𝑈) = 1 − 𝛼                  𝑓𝑜𝑟 0 < 𝛼 < 1 

Then we have a probability 1 − 𝛼 of selecting random sample that will produce an interval 

containing 𝜃. The interval  𝜃𝐿 < 𝜃 < 𝜃𝑈, computed from the selected sample, is called a 100(1 −

𝛼)% confidence interval. 
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Confidence interval of single sample 

 

𝑃 (−𝑍𝛼
2⁄ < 𝑍 < 𝑍𝛼

2⁄ ) = 1 − 𝛼 

From result of CLT, we know that 𝑧 =
�̅�−𝜇
𝜎

√𝑛⁄
 and by puting z to formula we will reach to  

𝑃 (−𝑍𝛼
2⁄ <

�̅� − 𝜇
𝜎

√𝑛⁄
< 𝑍𝛼

2⁄ ) = 1 − 𝛼 

Multiplying each term in the inequality by 𝜎
√𝑛⁄  and then subtracting �̅� from each term and 

multiplying by -1 (reserve the sense of the inequalities) , we obtain  

𝑃 (�̅� − 𝑍𝛼
2⁄

𝜎
√𝑛⁄ < 𝜇 < �̅� + 𝑍𝛼

2⁄
𝜎

√𝑛⁄ ) = 1 − 𝛼 

Where 𝑍𝛼
2⁄  is the z value leaving an area of 𝛼 2⁄  to the right (𝑛 ≥ 30) 

Example: the average zinc concentration recovered from a sample of measurements taken in 

36 different locations in a river is found to be 2.6 grams per millimeter. Find the 95% and 

99% confidence intervals for the mean zinc concentration in the river. Assume that the 

population standard deviation is 0.3 gram per millimeter 

𝑃 (�̅� − 𝑍𝛼
2⁄

𝜎
√𝑛⁄ < 𝜇 < �̅� + 𝑍𝛼

2⁄
𝜎

√𝑛⁄ ) = 1 − 𝛼 

𝑃 (2.6 − 1.96
0.3

√36
< 𝜇 < 2.6 + 1.96

0.3

√36
) = 0.95 

𝑃(2.6 − 0.1 < 𝜇 < 2.6 + 0.1) = 0.95 

𝑃(2.5 < 𝜇 < 2.7) = 0.95 

𝑃 (�̅� − 𝑍𝛼
2⁄

𝜎
√𝑛⁄ < 𝜇 < �̅� + 𝑍𝛼

2⁄
𝜎

√𝑛⁄ ) = 1 − 𝛼 

𝑃 (2.6 − 2.575
0.3

√36
< 𝜇 < 2.6 + 2.575

0.3

√36
) = 0.99 

𝑃(2.6 − 0.13 < 𝜇 < 2.6 + 0.13) = 0.99 

𝑃(2.47 < 𝜇 < 2.73) = 0.99 
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1- Confidence interval on 𝝁, 𝝈𝟐𝑲𝒏𝒐𝒘𝒏 

If �̅� is the mean of random sample of size n from a population with known variance 𝝈𝟐, a        

100(1 − 𝛼)% confidence interval for 𝝁 is given by  

�̅� − 𝑧𝛼
2⁄

𝜎

√𝑛
< 𝜇 < �̅� + 𝑧𝛼

2⁄

𝜎

√𝑛
 

Where 𝑧𝛼
2⁄  is the z value leaving an area of 𝛼 2⁄  to the right (𝑛 ≥ 30) 

Example:  One organization wishes to have information on the mean income of managers in the 

industry. A random sample of 256 managers reveals a sample mean of $45,240. The standard 

deviation of this population is $2,050. The association would like answers to the following questions. 

- What is the point estimator of mean’s population? 

- What is the reasonable range of values for the population mean with confidence coefficient 

of 0.95 

- What do these results mean? 

�̂� = �̅� = 45240 

𝑃 (�̅� − 𝑍𝛼
2⁄

𝜎
√𝑛⁄ < 𝜇 < �̅� + 𝑍𝛼

2⁄
𝜎

√𝑛⁄ ) = 1 − 𝛼 

𝑃 (45240 − 1.96
2050

√256
< 𝜇 < 45240 + 1.96

2050

√256
) = 0.95 

𝑃(45240 − 251 < 𝜇 < 45240 + 251) = 0.95 

𝑃(44989 < 𝜇 < 45491) = 0.95 

If we select many samples of 256 managers, and for each sample, we calculate the mean value and 

then construct a 95 percent confidence interval. We could expect that about 95 percent of these 

confidence intervals to contain the real population mean value.  

Note: the 100(1 − 𝛼)% confidence interval provides an estimate of the accuracy of our point 

estimate. İf 𝜇 is actually the center value of the interval, then �̅� estimates 𝜇 without error. But most 

of the time there will be an error. The size of this error will be the absolute value of difference 

between 𝜇 and �̅�, and we can be 100(1 − 𝛼)% confident that this difference will not exceed 𝑧𝛼
2⁄

𝜎

√𝑛
. 

We can readily see this if we draw a diagram of a hypothetical confidence interval, as 

 

In the previous example, we are 95% confident that the sample mean �̅� = 45,240 differs from the 

true mean 𝜇 by an amount less than 
(1.96)(2050)

√256
= 251.125      and 99% confident that the difference 

is less than
(2.575)(2050)

√256
= 329.922. 
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Theorem: if �̅� is used as an estimate of 𝜇, we can be 100(1 − 𝛼)% confident that the error will not 

be exceed a specified amount 𝑒when the sample size is 𝑛 = (
𝑧𝛼

2⁄ 𝜎

𝑒
)2 

Example: How large a sample is required if we want to be 95% confident that our estimate of 𝜇 in the 

previous example is off by less than 50? 

is 𝑛 = (
𝑧𝛼

2⁄ 𝜎

𝑒
)2 = (

1.96×2050

50
)2 = 6457 

1-1 One sided confidence bounds on 𝝁, 𝝈𝟐 

If �̅� is the mean of random sample of size n from a population with known variance 𝝈𝟐, a        

100(1 − 𝛼)% confidence bounds for 𝝁 is given by  

  𝐿𝑜𝑤𝑒𝑟 𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑 𝑏𝑜𝑢𝑛𝑑                        �̅� − 𝑧𝛼

𝜎

√𝑛
 

   𝑈𝑝𝑝𝑒𝑟 𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑 𝑏𝑜𝑢𝑛𝑑                       �̅� + 𝑧𝛼

𝜎

√𝑛
 

Example: In previous example construct Lower and Upper bound for the population mean with 

confidence coefficient of 0.95 and 0.99 

𝑈𝑝𝑝𝑒𝑟: 𝑃 (𝜇 < �̅� + 𝑍𝛼
𝜎

√𝑛⁄ ) = 1 − 𝛼 →  𝑃 (𝜇 < 45240 + 1.645
2050

√256
) = 0.95 →  𝑃(𝜇 < 45450) = 0.95 

𝑙𝑜𝑤𝑒𝑟: 𝑃 (𝜇 > �̅� − 𝑍𝛼
𝜎

√𝑛⁄ ) = 1 − 𝛼 →  𝑃 (𝜇 > 45240 − 1.645
2050

√256
) = 0.95 →  𝑃(𝜇 > 45030) = 0.95 

𝑈𝑝𝑝𝑒𝑟𝑃 (𝜇 < �̅� + 𝑍𝛼
𝜎

√𝑛⁄ ) = 1 − 𝛼 →  𝑃 (𝜇 < 45240 + 2.33
2050

√256
) = 0.99 →  𝑃(𝜇 < 45537) = 0.99 

𝑙𝑜𝑤𝑒𝑟: 𝑃 (𝜇 > �̅� − 𝑍𝛼
𝜎

√𝑛⁄ ) = 1 − 𝛼 →  𝑃 (𝜇 > 45240 − 2.33
2050

√256
) = 0.99 →  𝑃(𝜇 > 44943) = 0.99 


