The Systems

Question. Solve the following systems of equations using elimination.

1. y = 3x y = x + 43. 2y = 6x + 4 -3x + y = 25. y = 36 - 9x5. y = 36 - 9x6. 7x + 2y = 16-21x - 6y = 24

The Applications of the Systems

Question. The supply and demand for a printer cartridge depend on the price according to the equations

$$y_d = -10x + 500$$

where x is the price per cartridge in dollars and y_d is the demand measured in 1000s of cartridges, and

$$y_s = \frac{20}{3}x$$

where x is the price per cartridge in dollars and y_s is the supply measured in 1000s of cartridges. Find the price at which the supply and demand are in equilibrium.

Question. The supply and demand for a pack of note cards depend on the price according to the equations

$$y_d = -130x + 660$$

where x is the price per pack in dollars and y_d is the demand in 1000s of note cards, and

$$y_s = 90x$$

where x is the price per pack in dollars and y_s is the supply measured in 1000s of note cards. Find the price at which the supply and demand are in equilibrium.

Question. Given the cost function C(x) and the revenue function R(x), find the number of units x that must be sold to break even.

C(x) = 20x + 50000R(x) = 25x