MATH103 - TUTORIAL QUESTIONS

The Systems

Question. Solve the following systems of equations using elimination.

1. $y=3 x$
$y=x+4$
2. $\begin{gathered}-3 \mathrm{x}+\mathrm{y}=2 \\ -5 x+y=-10\end{gathered}$
3. $\begin{array}{r}2 y=6 x+4 \\ -3 x+y=2\end{array}$
4. $\frac{2}{3} x+y-15=0$
$2 x+3 y=7$
$y=36-9 x$
5. $3 x+y / 3=12$
6. $\begin{gathered}7 x+2 y=16 \\ -21 x-6 y=24\end{gathered}$

The Applications of the Systems

Question. The supply and demand for a printer cartridge depend on the price according to the equations

$$
y_{d}=-10 x+500
$$

where x is the price per cartridge in dollars and y_{d} is the demand measured in 1000s of cartridges, and

$$
y_{s}=\frac{20}{3} x
$$

where x is the price per cartridge in dollars and y_{s} is the supply measured in 1000 s of cartridges. Find the price at which the supply and demand are in equilibrium.

Question. The supply and demand for a pack of note cards depend on the price according to the equations

$$
y_{d}=-130 x+660
$$

where x is the price per pack in dollars and y_{d} is the demand in 1000s of note cards, and

$$
y_{s}=90 x
$$

where x is the price per pack in dollars and y_{s} is the supply measured in 1000 s of note cards. Find the price at which the supply and demand are in equilibrium.

Question. Given the cost function $C(x)$ and the revenue function $R(x)$, find the number of units x that must be sold to break even.

$$
\begin{aligned}
& C(x)=20 x+50000 \\
& R(x)=25 x
\end{aligned}
$$

