EASTERN MEDITERRANEAN UNIVERS DEPARTMENT OF MATHEMATICS	ITY	Question	Mark
Math104 – Mathematics for Business and Economics II 1. 2017 – 2018 Fall Semester 1.			
Second Midterm Exam Date: 18.11.2017; Duration: 90 min.; Note: Calculator is allowed.		2.	
Name surname :		3.	
Student Number : Group Number: Department : İmza:		4.	
$f(x) = \frac{1}{r^3} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2}$	d) Find the	TOTAL	
1. Given $y = f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x + 10$. a) Find the critical values/points of the function $f(x)$. (6 p.)	inflection point of the function, f(x).		(4 p.)
 b) Use first derivative test to determine the nature of the critical values/points. (6 p.) 	e) Use second derivation of $f(x)$. Write the order down intervals of	concave up and	d concave
c) Write the increasing and decreasing intervals of $f(x)$. (4 p.)			

2. The total revenue; <i>R</i> , and the total cost; <i>C</i> , functions for a product are given below: $R = 500q - 0.005q^2$ and $C = 150000 + 100q + 0.003q^2$ where <i>q</i> is the quantity demanded a) Find the marginal revenue function. (5 p.)	d) Construct the profit function. ((5 p.)
b) Find the marginal cost function. (5 p.)		
c) Use marginal approach to determine the profit maximizing level of output (quantity). (5 p.)	e) Find the amount of maximum profit.	(5 p.)

3. The demand function for a firm's product is <i>q</i> product (in dollars) and <i>q</i> is the number of u	
 a) Determine the price that should be charged in order to maximize the total revenue. (10 p.) 	d) Determine and identify the elasticity of demand at the revenue maximizing level of price. (7 p.)
	e) Sketch the graph of revenue function. (8 p.)
b) How many units must be demanded for the maximizing level of price? (5 p.)	
c) What is the maximum revenue? (5 p.)	

product (<i>in dollars</i>) and q is the quantity de	s $p = 500 - 0.05q$, where p is the price of the emanded. It is also known that the cost function , where q is the number of units produced.
a) Determine how many units must be pro- duced in order to minimize the total cost. (8 p.)	c) Find the total revenue function. (4 p.)
	d) Find the marginal revenue function. (4 p.)
b) What is the minimum total cost? (5 p)	e) Find the marginal revenue when $q = 20$. (4 p.)