Math 104 – Mathematics for Business and Economics II			
QUIZ II			
Duration 50 minutes			
Name		Student No	
Surname		Group	

For the following questions *show all your work clearly* to find the answer.

Question 1. (25 pts.) Find the following derivative.

$$y = \sqrt{2x + x} \ln \left(x^3 + 2x + 5 \right) + e^{3x^2 + 2x + 1} + x^e$$

$$y = \frac{3}{2} (2x+x)^{-\frac{1}{2}} \ln (x^3+2x+5) + \frac{3x^2+2}{x^3+2x+5} \sqrt{2x+x} + (6x+2)e^{3x^2+2x+1} + ex^{e^{-1}}$$

Question 2. (25 pts.) Find the equation of the **tangent line** touching to $y = \frac{1}{2}$ at x

 $y' = \frac{-2x}{x^4} = -\frac{2}{x^3}$, $m = \frac{-2}{1^3} = -2$, when x = 1 then $y = \frac{1}{1^2} = 1$

The equation of the tangent line of this curve is

$$y - y_1 = m(x - x_1)$$
, $y - 1 = -2(x - 1)$
 $y = -2x + 3$

Question 3. (25 *pts.*) Find all x on $y = f(x) = 3x^4 - 4x^3 + 2$ where the tangent line to y at x is horizontal.

The slope of the horizontal tangent lines is zero. m = 0

$$m = y' = f'(x) = 12x^{3} - 12x^{2} = 0$$

$$12x^{2}(x-1) = 0, \quad x = 0 \text{ and } x = 1$$

Question 4. (25 pts.) Find all criticals (min / max) on $y = 3x^4 - 4x^3 + 2$.

 $y' = 12x^3 - 12x^2 = 12x^2(x-1) = 0$. The critical points are x = 0 and x = 1. We can use first derivative test ,

x	0 1			
$12x^{2}$	+	+	+	
x-1	-	-	+	
y'	-	-	+	
У	decreasing decreasing increa		increasing	

If x = 0 then y = 2. If x = 1 then y = 1.

So relative minimum point is (1,1).

(0,2) is an inflection point from the second derivative of y.

Math 104 – Mathematics for Business and Economics II			
QUIZ II			
Duration 50 minutes			
Name		Student No	
Surname		Group	

For the following questions show all your work clearly to find the answer.

Question 1. (25 pts.) Find the following derivative.

$$y = \ln\left(\frac{2x+3}{3x-4}\right) + e^{(x^3+x-1)^2} + x^{\ln(2)}$$

$$y' = \frac{2(3x-4) - 3(2x+3)}{(3x-4)^2 (\frac{2x+3}{3x-4})} + 2(x^3 + x - 1)(3x^2 + 1)e^{(x^3 + x - 1)^2} + \ln(2)x^{\ln(2) - 1}$$

Question 2. (25 pts.) Find the equation of the **tangent line** touching to $y = \frac{1}{1}$ at x = 2.

$$y' = \frac{-1}{(x-1)^2}$$
, $m = \frac{-1}{1^2} = -1$, when $x = 2$ then $y = \frac{-1}{1^2}$

The equation of the tangent line of this curve is

$$y - y_1 = m(x - x_1)$$
, $y - 1 = -(x - 2)$, $y = -x + 3$

Question 3. (25 pts.) Find all x on $y = f(x) = 2x^3 - x^4$ where the tangent line to y at x is horizontal.

The slope of the horizontal tangent lines is zero. m = 0

$$m = y' = f'(x) = 6x^{2} - 4x^{3} = 0$$

2x²(3-x) = 0, x = 0 and x = 3

Question 4. (25 pts.) Find all criticals (min / max) on $y = 2x^3 - x^4$.

 $y' = 6x^2 - 4x^3 = 2x^2(3-x) = 0$. The critical points are x = 0 and x = 3. We can use first derivative test,

x		0	3
$2x^2$	+	+	+
3-x	+	+	-
y'	+	+	-
у	increasing	increasing	decreasing

If x = 0 then y = 0. If x = 3 then y = -27.

So, relative maximum points are (3, -27)

(0,0) is an inflection point from the second derivative of y.

Math 104 – Mathematics for Business and Economics II			
QUIZ II			
Duration 50 minutes			
Name		Student No	
Surname		Group	

For the following questions *show all your work clearly* to find the answer.

Question 1. (20 pts.) Find all x on f(x) where the tangent line to f(x) at x is horizontal

$$f(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + 3$$

The slope of horizontal tangent lines is zero.

$$m = f'(x) = x^{3} - x = x(x-1)(x+1) = 0$$

So, $x = 0, x = -1, x = 1$

Question 2. (60 pts.) Find the absolute extrema of the given function on the given interval.

$$f(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + 3$$
, [-2,3]

$$f'(x) = x^3 - x = x(x-1)(x+1) = 0$$
, $x = 0, -1, 1 \in [-2]$

X	-	1	0	1
<i>x</i> +1	- ~`	+	+	+
X		-	+	+
x-1	-	-	-	+
y'	-	+	-	+
У	decreasing	increasing	decreasing	increasing

If
$$x = 0$$
 then $y = 3$. If $x = -1$ then $y = \frac{1}{4} - \frac{1}{2} + 3 = \frac{11}{4} = 2.75$. If $x = 1$ then $y = \frac{1}{4} - \frac{1}{2} + 3 = \frac{11}{4} = 2.75$.
If $x = -2$ then $y = 4 - 2 + 3 = 5$. If $x = 3$ then $y = \frac{81}{4} - \frac{9}{2} + 3 = \frac{75}{4} = 18.5$.
So, relative maximum points are $(0,3)$. Relative minimum points are $(-1,\frac{11}{4})$ and $(1,\frac{11}{4})$.
Absolute maximum point is $(3,\frac{75}{4})$ and Absolute minimum points are $(-1,\frac{11}{4})$ and $(1,\frac{11}{4})$.

Question 3. (20 pts.) Find an equation of the tangent line to the curve of $y = \frac{x+4}{5-x}$ at the point x=1.

$$y' = \frac{(5-x)+(x+4)}{(5-x)^2}, \text{ when } x = 1, \ m = y' = \frac{(4)+(5)}{(4)^2} = \frac{9}{16} \text{ and } y = \frac{5}{4}, \text{ The equation of tangent}$$

line is $y - y_1 = m(x - x_1), \quad y - \frac{5}{4} = \frac{9}{16}(x - 1), \quad y = \frac{9}{16}x + \frac{11}{16}$