MATH 104 TUTORIAL Applications of the Derivatives, Elasticity

Q1. Profit

Given the demand equation for the product is

$$p = q^2 - 100q + 3200$$

and the manufacturer's average-cost function is

$$\overline{c} = \frac{2}{3}q^2 - 40q + \frac{10000}{q}$$

- a) Find the approximated additional revenue if the capacity is increased from 20 to 21 units. What is the actual change?
- b) Find the approximated additional cost if the capacity is increased from 100 to 101 units. What is the actual change?
- c) Is it profitable to produce the 101st unit? (i.e increase from 100 to 101)
- d) What is *q* for maximum profit?
- e) What is the expected maximum profit?
- f) What is the selling price p at maximum profit?

Q2. <u>Revenue</u>

Given q = 6 - 0.2p. Find the approximated additional revenue. (2 to 3)

Q3. Given $p = q^2 - 100q + 3200$. Find the elasticity η at q = 10, q = 20, q = 30 and comment.

Q4. Given $p = 1200 - q^2$. Find the elasticity η at q = 10, q = 20, q = 25 and comment.

Q5. Given $q = 900 - p^2$. Find the elasticity η at p = 5\$ and comment.

Q6. Given the demand function q = 900 - 30p. Determine the price at which the demand is unit elasticity.

Q7. <u>Profit</u>

Given the demand equation for the product is

$$q = \frac{400 - p}{50}$$

and

$$\frac{dC}{dq} = \frac{800}{q+5}$$

- a) Find revenue maximum level of q.
- b) Is it profitable to produce the 3^{rd} unit?
- c) Profit maximum level of q? Corresponding price p?
- d) Find the elasticity at p = \$50. Comment ?
- e) Find p for unit elastic demand.