MATH 104 TUTORIAL Applications of the Derivatives, Elasticity

Q1. Profit

Given the demand equation for the product is

$$
p=q^{2}-100 q+3200
$$

and the manufacturer's average-cost function is

$$
\bar{c}=\frac{2}{3} q^{2}-40 q+\frac{10000}{q}
$$

a) Find the approximated additional revenue if the capacity is increased from 20 to 21 units. What is the actual change?
b) Find the approximated additional cost if the capacity is increased from 100 to 101 units. What is the actual change?
c) Is it profitable to produce the $101^{\text {st }}$ unit? (i.e increase from 100 to 101)
d) What is q for maximum profit?
e) What is the expected maximum profit?
f) What is the selling price p at maximum profit?

Q2. Revenue

Given $q=6-0.2 p$. Find the approximated additional revenue. (2 to 3)

Q3. Given $p=q^{2}-100 q+3200$. Find the elasticity η at $q=10, q=20, q=30$ and comment.
Q4. Given $p=1200-q^{2}$. Find the elasticity η at $q=10, q=20, q=25$ and comment.
Q5. Given $q=900-p^{2}$. Find the elasticity η at $p=5 \$$ and comment.
Q6. Given the demand function $q=900-30 p$. Determine the price at which the demand is unit elasticity.

Q7. Profit

Given the demand equation for the product is

$$
q=\frac{400-p}{50}
$$

and

$$
\frac{d C}{d q}=\frac{800}{q+5}
$$

a) Find revenue maximum level of q.
b) Is it profitable to produce the $3^{\text {rd }}$ unit?
c) Profit maximum level of q ? Corresponding price p ?
d) Find the elasticity at $p=\$ 50$. Comment?
e) Find p for unit elastic demand.

