## MATH 104 TVTORIAL ELasticity and Lagrange

Question1. Locate and identify all criticals on
a) $z=f(x, y)=x^{2}+y^{2}-5 x+4 y$
b) $z=f(x, y)=\frac{1}{3}\left(x^{3}+8 y^{3}\right)-2\left(x^{2}+y^{2}\right)+1$

Question2. Given $f(x, y)=\ln (x+y)\left(1+e^{3 x}\right)^{2}-5(x+y)^{2}+x^{2} y^{3}$. Find $f_{x y}$ and $f_{y x}$.

## Question3. Pricing Model

A manufacturer sells two related products, the demands for which are estimated by the following two demand functions:

$$
\begin{aligned}
& q_{1}\left(p_{1}, p_{2}\right)=150-2 p_{1}-p_{2} \\
& q_{2}\left(p_{1}, p_{2}\right)=200-p_{1}-3 p_{2}
\end{aligned}
$$

Where $p_{j}$ : the price (in dollars) of product $\mathrm{j}, q_{j}$ : the demand (in thousand of units) for product j .
a) The firm wants to determine the price it should charge for each product in order to maximize total revenue from the sale of the twoducts.
b) Determine the Marginal changes at $p_{1}=30 \$, p_{2}=10 \$$ demands and classify these products, interpret.
c) Find $\eta_{11}, \eta_{21}$ at revenue maximizing prices, interpret.

Quetion4. Find the critical points and their natures for $z=f(x, y)=3 x-y+6$ subject to the constraint $x^{2}+y^{2}=4$. (LAGRANGE)

Question5. Find the critical points and their natures for $z=f(x, y)=5 x^{2} y$ subject to the constraint $x+2 y=24$. (LAGRANGE)

Question6. Given

```
Minimize \(f(x, y)=2 x^{2}+4 y^{2}-3 x y-2 x-23 y+3\)
    subject to \(x+y=15\)
```

What will be the change in function value at optimum if the constraint changes to $x+y=16$.

