E.M.U. - FACULTY OF ARTS AND SCIENCES DEPARTMENT OF MATHEMATICS
 Math 106 -- Linear Algebra
 First Midterm Examination
 26.11.2015

Name-Surname			Student Number		
Group number			Signature		
Question 1	Question 2	Question 3	Question 4	Question 5	Question 6
$/ 20$	$/ 20$	$/ 20$	$/ 15$	$/ 20$	Total

Duration: 90 mins.

Q1) Determine for what values of $a \in \mathbb{R}$, the linear system

$$
\begin{array}{r}
x+y+a z=1 \\
x+a y+z=1 \\
a x+y+z=1
\end{array}
$$

has
a) no solution
b) unique solution
c) infinitely many solutions.

Q2) Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7\end{array}\right]$. Express the matrix A^{-1} as a product of elementary matrices.

Q3) Consider the following linear system:

```
x - 3y + z = 4
2x-y=-2
4x - 3z=0
```

a) Find the inverse of the coefficient matrix A.
b) Solve the system, by using the inverse of A.

Q4) Decide whether the given matrix is invertible. If so, use Adjoint method to find its inverse.

$$
A=\left(\begin{array}{ccc}
2 & 0 & 3 \\
0 & 3 & 2 \\
-2 & 0 & -4
\end{array}\right)
$$

Q5)

a) Find the following determinant, by reducing the matrix to Row-Echelon Form:

b) By using the properties of determinants, show that

$$
\left|\begin{array}{ccc}
b+c & c+a & b+a \\
a & b & c \\
2 & 2 & 2
\end{array}\right|=0
$$

Q6)

a) Prove that, if A is $n \times n$ matrix, then

$$
\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}
$$

b) Show that, if B is a square matrix, then
i. $B B^{T}$ is symmetric.
ii. $\quad B+B^{T}$ is symmetric.

