E.M.U. - FACULTY OF ARTS AND SCIENCES DEPARTMENT OF MATHEMATICS Math106 -- Linear Algebra First Midterm Examination 26.11.2015

Name-Surnan	ne				Student Number			
Group numbe	er					ature		
Question 1	Que	stion 2	Question 3	Question 4		Question 5	Question 6	Total
/20	/20		/20	/15		/20	/15	

Duration: 90 mins.

Q1) Determine for what values of $a \in \mathbb{R}$, the linear system

x + y + az = 1 x + ay + z = 1ax + y + z = 1

has

- a) no solution
- b) unique solution
- c) infinitely many solutions.

Q2) Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7 \end{bmatrix}$. Express the matrix A^{-1} as a product of elementary matrices.

Q3) Consider the following linear system:

- a) Find the inverse of the coefficient matrix A.
- b) Solve the system, by using the inverse of A.

Q4) Decide whether the given matrix is invertible. If so, use Adjoint method to find its inverse.

$$A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{pmatrix}$$

Q5)

a) Find the following determinant, by reducing the matrix to **Row-Echelon Form**:

b) By using the properties of determinants, show that

 $\begin{vmatrix} b + c & c + a & b + a \\ a & b & c \\ 2 & 2 & 2 \end{vmatrix} = 0$

Q6)

a) Prove that, if *A* is $n \times n$ matrix, then

 $det(adj(A)) = (det(A))^{n-1}$

- b) Show that, if *B* is a square matrix, then
 - i. BB^T is symmetric.
 - ii. $B + B^T$ is symmetric.