Question1) Find the solution of each of the following linear equations.

a)
$$7x - 5y = 3$$

b)
$$3v - 8w + 2x - y + 4z = 0$$

c)
$$3x_1 - 5x_2 + 4x_3 = 7$$

d) $-8x_1 + 2x_2 - 5x_3 + 6x_4 = 1$

Question2) Find the augmented matrix for each of the following systems of linear equations.

$$3x_1 - 2x_2 = -1 a) 4x_1 + 5x_2 = 3 7x_1 + 3x_2 = 2 x_1 + 2x_2 - x_4 + x_5 = 1 3x_2 + x_3 - x_5 = 2 7x_3 + 7x_4 = 1$$

Question3) Find a system of linear equations corresponding to the augmented matrix.

	[∩	0	0]		[1	0	0	0	7]	
a)	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	0 4 1	0 1	۲	0	1	0	0	-2	
	0			D)	0	0	1	0	3	
					0	0	0	1	7 -2 3 4	

Question4) For which values(s) of the constant k does the following system of linear equations have no solutions? Exactly one solution? Infinitely many solutions?

$$x - y = 3$$
$$2x - 2y = k$$

Question5) Consider the system of equations

$$x + y + 2z = a$$
$$x + z = b$$
$$2x + y + 3z = c$$

Show that in order for this system to be consistent a,b, and c must satisfy c = a + b

Question6) In each part, determine whether the matrix is in row echelon form (REF), reduced row echelon form (RREF), both or neither.

a)
$$\begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & -7 & 5 & 5 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Question7) In each part, suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the given REF. Solve the system.

	Γ1	0	8	_5	6]		1	7	-2	0	-8	-3	
a)		08	4	0	2	F)	0	0	1	1	6	5	
						(0)	0	0	0	1	3	9	
	[0	0	1 1	1	2		0	0	-2 1 0 0	0	0	0	

Question8) Solve each of the following systems by Gauss Elimination and Gauss-Jordan Elimination.

Question9) Solve the following homogeneous systems of linear equations by any method.

$$2x - y - 3z = 0 a) -x + 2y - 3z = 0 x + y + 4z = 0 b) x_1 + 2x_2 = 1 x_2 + x_3 = -1 c) 3x_1 + x_2 + x_3 + x_4 = 0 5x_1 - x_2 + x_3 - x_4 = 0 5x_1 - x_2 + x_3 - x_4 = 0 c) -x + 2y - 3z = 0 b) x_1 + 2x_2 = -1 c) -x + 2y - 3z = 0 c) -x + 2y - 3z = 0$$

Question10) Solve the following system where a,b, and c are constant.

$$2x + y = a$$
$$3x + 6y = b$$