Question1) Find the solution of each of the following linear equations.
a) $7 x-5 y=3$
b) $3 v-8 w+2 x-y+4 z=0$
c) $3 x_{1}-5 x_{2}+4 x_{3}=7$
d) $-8 x_{1}+2 x_{2}-5 x_{3}+6 x_{4}=1$

Question2) Find the augmented matrix for each of the following systems of linear equations.

$$
\begin{array}{rlrl}
3 x_{1}-2 x_{2} & =-1 & x_{1}+2 x_{2}-x_{4}+x_{5} & =1 \\
\text { a) } 4 x_{1}+5 x_{2} & =3 & 3 x_{2}+x_{3}-x_{5} & =2 \\
7 x_{1}+3 x_{2} & =2 & 7 x_{3}+7 x_{4} & =1
\end{array}
$$

Question3) Find a system of linear equations corresponding to the augmented matrix.
a) $\left[\begin{array}{ccc}2 & 0 & 0 \\ 3 & -4 & 0 \\ 0 & 1 & 1\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$

Question4) For which values(s) of the constant k does the following system of linear equations have no solutions? Exactly one solution? Infinitely many solutions?

$$
\begin{aligned}
& x-y=3 \\
& 2 x-2 y=k
\end{aligned}
$$

Question5) Consider the system of equations

$$
\begin{aligned}
& x+y+2 z=a \\
& x+z=b \\
& 2 x+y+3 z=c
\end{aligned}
$$

Show that in order for this system to be consistent a, b, and c must satisfy $c=a+b$

Question6) In each part, determine whether the matrix is in row echelon form (REF), reduced row echelon form (RREF), both or neither.
a) $\left[\begin{array}{lllll}1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 4\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & -7 & 5 & 5 \\ 0 & 1 & 3 & 2\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Question7) In each part, suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the given REF. Solve the system.
a) $\left[\begin{array}{ccccc}1 & 0 & 8 & -5 & 6 \\ 0 & 1 & 4 & -9 & 3 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
b) $\left[\begin{array}{cccccc}1 & 7 & -2 & 0 & -8 & -3 \\ 0 & 0 & 1 & 1 & 6 & 5 \\ 0 & 0 & 0 & 1 & 3 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Question8) Solve each of the following systems by Gauss Elimination and Gauss-Jordan Elimination.

$$
x-y+2 z-w=-1
$$

$$
2 x_{1}+2 x_{2}+2 x_{3}=0
$$

$$
\text { a) }-2 x_{1}+5 x_{2}+2 x_{3}=1
$$

$$
8 x_{1}+x_{2}+4 x_{3}=-1
$$

b) $2 x+y-2 z-2 w=-2$
$4 x_{1}-8 x_{2}=12$
b) $-x+2 y-4 z+w=1$
c) $3 x_{1}-6 x_{2}=9$

$$
3 x \quad-3 w=-3
$$

$$
-2 x_{1}+4 x_{2}=-6
$$

d) $\begin{aligned} 5 x_{1}-2 x_{2}+6 x_{3} & =0 \\ -2 x_{1}+x_{2}+3 x_{3} & =1\end{aligned}$

Question9) Solve the following homogeneous systems of linear equations by any method.
$2 x-y-3 z=0$
a) $-x+2 y-3 z=0$
$x+y+4 z=0$
b) $x_{1}+2 x_{2}$
$2 x_{1}+x_{2}+3 x_{3}=0$
$x_{2}+x_{3}=-1$
c) $\begin{aligned} & 3 x_{1}+x_{2}+x_{3}+x_{4}=0 \\ & 5 x_{1}-x_{2}+x_{3}-x_{4}=0\end{aligned}$

Question10) Solve the following system where a, b, and c are constant.

$$
\begin{aligned}
& 2 x+y=a \\
& 3 x+6 y=b
\end{aligned}
$$

