Formulas

Compound Amount: To find F, given P
$(F / P, i, n) \quad F=P(1+i)^{n}$

Present Worth: To find P, given F $(P / F, i, n) \quad P=F(1+i)^{-n}$

Series Compound Amount: To find F, given A

$$
(F / A, i, n) \quad F=A\left[\frac{(1+i)^{n}-1}{i}\right]
$$

Sinking Fund: To find A, given F

$$
(A / F, i, n) \quad A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

Series Present Worth: To find P, given A
$(P / A, i, n) \quad P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$

Arithmetic Gradient Uniform Series: To find A, given G
(A/G, $i, n)$

$$
A=G\left[\frac{(1+i)^{n}-i n-1}{i(1+i)^{n}-i}\right] \quad \text { or } \quad A=G\left[\frac{1}{i}-\frac{n}{(1+i)^{n}-1}\right]
$$

Arithmetic Gradient Present Worth: To find P, given G

$$
(P / G, i, n) \quad P=G\left[\frac{(1+i)^{n}-i n-1}{i^{2}(1+i)^{n}}\right]
$$

Geometric Gradient: To find P, given A_{1}, g
$(P / G, g, i, n)$

$$
\begin{array}{cc}
P=A_{1}\left\lfloor n(1+i)^{-1}-\right. & P=A_{1}\left[\frac{1-(1+g)^{n}(1+i)^{-n}}{i-g}\right] \\
\text { when } i=g & \text { when } i \neq g
\end{array}
$$

Continuous Compounding at Nominal Rate r

Single Payment:

$$
F=P\left[e^{r n}\right.
$$

$$
P=F \mid e^{-r n}
$$

Uniform Series:

$$
A=F\left[\frac{e^{r}-1}{e^{r n}-1}\right] \quad A=P\left[\frac{e^{r n}\left(e^{r}-1\right)}{e^{r n}-1}\right]
$$

$$
F=A\left[\frac{e^{r n}-1}{e^{r}-1}\right] \quad P=A\left[\frac{e^{r n}-1}{e^{r n}\left(e^{r}-1\right)}\right]
$$

Compound Interest

$\boldsymbol{i}=$ Interest rate per interest period.
$\boldsymbol{n}=$ Number of interest periods.
$\boldsymbol{P}=$ A present sum of money.
$\boldsymbol{F}=$ A future sum of money.
$\boldsymbol{A}=$ An end-of-period cash receipt or disbursement in a uniform series continuing for n periods.
$\boldsymbol{G}=$ Uniform period-by-period increase or decrease in cash receipts or disbursements.
$\boldsymbol{g}=$ Uniform rate of cash flow increase or decrease from period to period; the geometric gradient.
$\boldsymbol{r}=$ Nominal interest rate per interest period.
$\boldsymbol{m}=$ Number of compounding subperiods per period.

Effective Interest Rates

For non-continuous compounding: $\quad \mathrm{i}_{e f f}$ or $\mathrm{i}_{a}=\left(1+\frac{r}{m}\right)^{m}-1$
where $\quad r=$ nominal interest rate per year
$m=$ number of compounding periods in a year
OR
$\mathrm{i}_{e f f}$ or $\mathrm{i}_{a}=(1+i)^{n}-1$
where $\quad i=$ effective interest rate per period $m=$ number of compounding periods in a year

For continuous compounding:
$\mathrm{i}_{\text {eff }}$ or $\mathrm{i}_{a}=\left(e^{r}\right)-1$
where $\quad r=$ nominal interest rate per year

Values of Interest Factors When \boldsymbol{n} Equals Infinity

Single Payment:

$(F / P, i, \infty)=\infty$
$(P / F, i, \infty)=0$

Uniform Payment Series:

$$
\begin{array}{ll}
(A / F, i, \infty)=0 & (F / A, i, \infty)=\infty \\
(A / P, i, \infty)=i & (P / A, i, \infty)=1
\end{array}
$$

Arithmetic Gradient Series:

$(A / G, i, \infty)=1 / i$
$(P / G, i, \infty)=1 / i^{2}$

