CMPE-343: SYSTEMS Programming Experiments on Laboratory Works

The study of processes in UNIX
INTRODUCTION
Using the system call fork(), any process (a parent process) in UNIX can create one or more child processes. The purpose of this laboratory work is to study processes in UNIX in more detail. Using simple programs, a student will investigate the basic characteristics of processes and thereby get more broad understanding of processes in UNIX.

The laboratory work consists of four parts. In the first part relations between the parent process and its child process is studied.

In the second part, relations between the parent process and its child processes is studied in detail. A student will see here how a child process can switch to another program and return its status to the parent process.

In the third part, a student will get more information about identifiers of processes. In particular, a student will see that, in some cases, a child process can have a different parent at different time.

Finally, the fourth part is concerned with the distribution of the virtual process memory.

To successfully perform the lab work and benefit from it, the student must understand at least the following system calls: fork(), getpid(), getppid(), wait() and execl(). A brief description of these system calls must be prepared by a student before starting the lab work (at home) and shown to the assistant. The student must understand also the library function sleep().
Part 1. Creation of a child process and getting process identifiers
1. In your home directory, create a directory LAB2 and input into this directory the programs given in APPENDIX. Source files may be copied from the course web page. To simplify the task of compilation and linking of the programs after each modification, the UNIX utility make can be used with the makefile file. The text of this file is given in Appendix.

2. Compile and link the program simple_fork.c
3. Run the program simple_fork (without any parameters), fix, in your notebook, the results and try to understand them. Pay special attention to using the system calls fork(), and wait() in the simple_fork. Investigate the effect of cycle "for" in child process.

4. Modify the program to use the standard function perror() for fork() system call.

5. Exclude, from the program simple_fork.c, the system call wait() and related statements. Check now the results of execution of the modified program. Understand and explain the difference between this and the initial version.

6. Exclude, from the program simple_fork.c, the system call exit() in the child portion of the program Check now the results of execution of the modified program. Understand and explain the difference between this and the initial version.

Part 2. Creation of child processes
7. Compile and link the programs mainprog.c and child.c (if you use the makefile, all the programs will be compiled and linked by the use of make utility).

8. Run the program mainprog (without any parameters), fix, in your notebook, the results and try to understand them. Pay special attention to using the system calls fork(), execl(), and wait() in the mainprog.

9. Exclude, from the program mainprog.c, the system call wait() and related statements. Check now the results of execution of the modified program. Understand and explain the difference between this and the initial version.

Part 3. Switching to another program by a child process
1.
Compile and link the programs procident.c and simple.c. If you used the utility make in Part 1 then this step is not necessary.

2.
Run the program procident and fix, in your notebook, the results. Which process did terminate first - the parent or its child? Explain why the child process has different parent process during its execution. Why does UNIX prompt appear before the program terminates?

3.
Modify now the programs procident.c and simple.c. Specifically, set argument of the function sleep() in procident.c equal to 10 for the parent process and equal to 3 for the child process. Fix the results of the execution of the programs. Which process did terminate first - the parent or its child? Explain why now the identifier of the parent process (as read by its child process) is always the same.

Part 4. Understanding of the distribution of a process memory (Optional)
UNIX keeps virtual memory addresses of each process (and each process has its own virtual address space). These addresses are available to the process and can be obtained by referencing the external variables etext, edata, end (see the picture of a process memory, in the lecture notes). The addresses of these three variables correspond respectively to the first valid address above the text area, initialized data and uninitialized data areas. There are heap area and stack area as well. Using the initial version of a program, presented in Appendix, a student must perform the following experiments (for this part of the lab work).

1. Input and create executable file, corresponding to the program procmemory.c.
2.

Run the program procmemory and draw, in your notebook, the picture showing the process memory distribution (the addresses of data and function) for the process.

3.
Insert into the program procmemory.c, after the statement int i = 0;, the system call fork(). What will be printed? Make sure that data items in two processes (such as i) have exactly the same virtual addresses in the both processes.

QUESTIONS
1. What is the purpose of this laboratory work?

2. What system call is used for the creation of a new process in UNIX?

3.
What is the meaning of the variable pid in the program simple_fork? Has this variable the same value for two processes in the program? Explain your answer in more detail

4.
Do both processes execute the same statements in the program simple_fork? If not, show which statements are executed by the parent and child processes.

5. How many child processes are created by the parent process in mainprog.c?

6.
In mainprog.c, a few statements are executed by each created child process. Show these statements.

7.
In mainprog.c, to what program is each child proceess switched? Show and explain the corresponding statement. Does a child process return to the mainprog after finishing another program (explain, why yes/no)?

8. Which statements are NOT executed by the parent process in mainprog.c?

9.

What is the purpose of the system call wait() in mainprog.c? What results are extracted by the parent process from this system call?

10. Is it possible for a child process to continue its work after the parent process terminates? What will the parent be for such a child? Prove your answer based on the results of the Part 3 of this lab

work.

11. Suppose that a variable i was declared and assigned some value in the parent process before the creation of a child process. Will this variable be accessible to the child process? If yes, what will be its value immediately after the creation of the child process? Will the parent process see the change made on this variable by the child process?

12. What is the meaning of two parameters of the function main() in the program child.c? What is

argv[1] in this program?

13. What is the purpose of system calls getpid and getppid?

14. Is it possible for a process to use more than one program?

15. Is it possible for two or more processes to use the same program?

16. What is the purpose of the system calls of the exec family? Does this system call return any result

(in case it succeeds or fails)?

17. What is the purpose of the directive #define in the program procmemory.c?

18. What is the meaning of the variables etext, edata and end in procmemory.c? Why are these variables declared with the word extern?

19. Is mallock () a system call or a library function? Can you guess it looking at your program?

The sources of information:
1. Curry, D., UNIX Systems Programming for SVR4, O’Reilly & Assoc., 1995, pp.283 -301.
2. Lecture notes.

APPENDIX
Makefile and initial versions of the program.
makefile
CC = cc

CFLAGS = -g
all : simple_fork mainprog child procident simple procmemory simple_fork : simple_fork.o

${CC} ${CFLAGS} simple_fork.o -o simple_fork
mainprog : mainprog.o

${CC} ${CFLAGS} mainprog.o -o mainprog
child : child.o

${CC} ${CFLAGS} child.o ${LIBS} -o child
procident : procident.o

${CC} ${CFLAGS} procident.o -o procident
simple : simple.o

${CC} ${CFLAGS} simple.o -o simple
procmemory : procmemory.o

${CC} ${CFLAGS} procmemory.o -o procmemory
clean :

rm -f *.o *~ *# core a.out\
mainprog child procident simple procmemory
/* simple_fork.c */
/* Creation of a process within a program in UNIX */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main ()

{

int pid;
int w, status;
int i;
printf("Process starts with id = %d\n", getpid());

printf("Parent: creating a child process\n");
pid = fork ();

if (pid == 0)
{
printf("Child process starts, id = %d\n",getpid());
printf("Parent process id = %d\n",getppid());
for (i=0; i<500000;i++); /* Long cycle */
printf("Parent process id = %d\n",getppid());
printf("Child is terminating \n");
exit (1);
}
else
{
printf("Parent starts, id= %d\n", getpid());
printf("Parent waits for the termination of child \n");
w = wait(&status);
printf ("Parent: child ID = %d returned status = %d\n",
w, WEXITSTATUS(status));
printf("Parent is terminating \n");
}

}
/* mainprog.c */

/* Switching to another program for a child process */
/* Investigation of wait() and exit() system calls */
/* See also the file child.c */
/* Adapted from J.S.Gray, pp. 73 -74 */
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdlib.h>

main ()
{
pid_t pid,w;
int i,status;
char value[3]; /* A place to store index as a string */
for (i=0; i<3;++i)
{
/* Parent creates 3 child processes */
if ((pid = fork()) ==0)
{
sprintf(value, "%d", i); /* value gets 0, 1, or 2 */
/* Each child switches to the program child
with argument value, without return */
execl("child", "child", value, 0);
}
else /* Parent continues here */
printf("Parent created child ID = %d\n", pid);
}
/* Parent waits when all its children terminate */

/* w = child ID or -1 if there is no child any more
*/
while ((w = wait(&status)) && w != -1)
{
if (w != -1) /* w = -1, no more children to wait */
printf ("Parent: child ID = %d returned status = %d\n",
w, WEXITSTATUS(status));
}
exit(0);
}
/* child.c */

/* Child for mainprog.c */
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
main (argc, argv)
int argc; char * argv[];
{
pid_t pid;
int ret_value;
pid = getpid();

ret_value = (int) (pid % 256);
printf ("Child %d will return status = %02X\n",
pid,ret_value);
srand ((unsigned) pid);
sleep(rand() % 5); /* Sleep for random time 0 - 4 s */
if (atoi(argv[1]) % 2)
{
printf("Child %d is terminating with SIGNAL 0009\n",
pid);
kill(pid,9); /* Child kills itself */
}
else
{
printf ("Child %d is terminating with exit(%04X)\n",pid,ret_value);

exit(ret_value);
}
}
/* procident.c */

/* Program to check identifiers of processes */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
main ()
{
int i = 0;
pid_t pid, parent, child, myparent;
pid = fork(); /* Parent creates a child process */
if (pid == 0) {/* Statements for the child process only */

child = getpid(); i = 2;
printf("Child: my ID = %d, i = %d\n", child, i);
myparent = getppid();
printf("Child: my parent ID = %d\n", myparent);
sleep(10); /* Child sleeps for 10 seconds */
child = getpid();
printf("\nChild after sleeping: my ID = %d\n", child);
myparent = getppid();
printf ("Child after sleeping: my parent ID = %d\n",
myparent);
execl("simple", "simple",0);} /* Swith to simple */
/* All the statements below are for the parent process only */

/* Depending on the argument of sleep(), the parent process
can terminate BEFORE or AFTER its child process */
else {

sleep(3);
parent = getpid();
printf ("Parent: my ID = %d, i = %d\n", parent, i);
printf ("Parent: terminating...\n");
}
}
/* simple.c */

/* A very simple program for a child process created in the program procident.c */

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main(argc, argv)
int argc;
char * argv[];
{
printf("NEW PROGRAM %s IS STARTED BY THE CHILD PROCESS\n", argv[0]);
printf("Child: my ID = %d\n", getpid());
printf("Child: my parent ID = %d\n", getppid());
printf("Child: terminating...\n");
exit(0);
}

/* procmemory.c */

/* Program to display address information about the process */
/* Adapted from Gray, J., program 1.4 */
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
/* Below is a macro definition */
#define SHW_ADR(ID,I) (printf ("ID %s \t is at virtual address: %8X\n",
ID,&I))
extern int etext, edata, end; /* Global variables for process memory */

char *cptr = "This message is output by the function showit()\n"; /* Static */

char buffer1[25];

int showit (); /* Function prototype */
main ()

{
int i = 0; /* Automatic variable */
/* Printing addressing information */
printf ("\nAddress etext: %8X \n", &etext);
printf ("Address edata: %8X \n", &edata);
printf ("Address end : %8X \n", &end);
SHW_ADR ("main", main);
SHW_ADR ("showit", showit);
SHW_ADR ("cptr", cptr);
SHW_ADR ("buffer1", buffer1);
SHW_ADR ("i", i);
strcpy (buffer1, "A demonstration\n"); /* Library function */
write (1, buffer1, strlen(buffer1) + 1); /* System call */
showit(cptr);
} /* end of main function */
/* A function follows */

int showit (p)
char * p;
{
char *buffer2;
SHW_ADR("buffer2", buffer2);
if ((buffer2 = (char *)malloc ((unsigned) (strlen(p) + 1))) != NULL)
{printf("Alocated memory at %X\n", buffer2);
strcpy (buffer2, p); /* copy the string */
printf ("%s", buffer2); /* Didplay the string */
free (buffer2); /* Release location */
}
else
{
printf ("Allocation error\n");
exit (1);
}
}
