

Software Testing

1

About the Tutorial

Testing is the process of evaluating a system or its component(s) with the intent to find

whether it satisfies the specified requirements or not.

Testing is executing a system in order to identify any gaps, errors, or missing

requirements in contrary to the actual requirements.

This tutorial will give you a basic understanding on software testing, its types, methods,

levels, and other related terminologies.

Audience

This tutorial is designed for software testing professionals who would like to understand

the Testing Framework in detail along with its types, methods, and levels. This tutorial

provides enough ingredients to start with the software testing process from where you

can take yourself to higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of the

software development life cycle (SDLC). In addition, you should have a basic

understanding of software programming using any programming language.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Software Testing

2

Table of Contents

About the Tutorial ..1

Audience ..1

Prerequisites ..1

Copyright & Disclaimer ...1

Table of Contents ...2

1. OVERVIEW .. 5

What is Testing? ...5

Who does Testing? ...5

When to Start Testing? ...5

When to Stop Testing? ...6

Verification & Validation ..6

2. MYTHS .. 7

3. QA, QC, AND TESTING ... 9

Testing, Quality Assurance, and Quality Control ...9

Audit and Inspection ..9

Testing and Debugging ... 10

4. ISO STANDARDS .. 11

ISO/IEC 9126 ... 11

ISO/IEC 9241-11 .. 11

ISO/IEC 25000:2005 .. 11

ISO/IEC 12119 ... 12

Miscellaneous ... 12

Software Testing

3

5. TYPES OF TESTING ... 14

Manual Testing ... 14

Automation Testing .. 14

What to Automate? .. 14

When to Automate? ... 15

How to Automate? ... 15

Software Testing Tools ... 15

6. TESTING METHODS ... 17

Black-Box Testing.. 17

White-Box Testing .. 17

Grey-Box Testing .. 18

A Comparison of Testing Methods .. 19

7. TESTING LEVELS .. 20

Functional Testing .. 20

Unit Testing .. 20

Integration Testing ... 21

System Testing ... 21

Regression Testing .. 22

Acceptance Testing ... 22

Non-Functional Testing ... 23

Usability Testing ... 24

Security Testing .. 25

Portability Testing .. 26

8. DOCUMENTATION .. 27

Test Plan ... 27

Test Scenario .. 27

Software Testing

4

Test Case .. 28

Traceability Matrix ... 29

9. ESTIMATION TECHNIQUES .. 30

Functional Point Analysis .. 30

Test Point Analysis .. 30

Mark-II Method .. 30

Miscellaneous ... 30

Software Testing

5

What is Testing?

Testing is the process of evaluating a system or its component(s) with the intent to find

whether it satisfies the specified requirements or not. In simple words, testing is

executing a system in order to identify any gaps, errors, or missing requirements in

contrary to the actual requirements.

According to ANSI/IEEE 1059 standard, Testing can be defined as - A process of

analyzing a software item to detect the differences between existing and required

conditions (that is defects/errors/bugs) and to evaluate the features of the software

item.

Who does Testing?

It depends on the process and the associated stakeholders of the project(s). In the IT

industry, large companies have a team with responsibilities to evaluate the developed

software in context of the given requirements. Moreover, developers also conduct testing

which is called Unit Testing. In most cases, the following professionals are involved in

testing a system within their respective capacities:

 Software Tester

 Software Developer

 Project Lead/Manager

 End User

Different companies have different designations for people who test the software on the

basis of their experience and knowledge such as Software Tester, Software Quality

Assurance Engineer, QA Analyst, etc.

It is not possible to test the software at any time during its cycle. The next two sections

state when testing should be started and when to end it during the SDLC.

When to Start Testing?

An early start to testing reduces the cost and time to rework and produce error-free

software that is delivered to the client. However in Software Development Life Cycle

(SDLC), testing can be started from the Requirements Gathering phase and continued till

the deployment of the software.

It also depends on the development model that is being used. For example, in the

Waterfall model, formal testing is conducted in the testing phase; but in the incremental

model, testing is performed at the end of every increment/iteration and the whole

application is tested at the end.

Testing is done in different forms at every phase of SDLC:

1. Overview

Software Testing

6

 During the requirement gathering phase, the analysis and verification of
requirements are also considered as testing.

 Reviewing the design in the design phase with the intent to improve the design is
also considered as testing.

 Testing performed by a developer on completion of the code is also categorized

as testing.

When to Stop Testing?

It is difficult to determine when to stop testing, as testing is a never-ending process and

no one can claim that a software is 100% tested. The following aspects are to be

considered for stopping the testing process:

 Testing Deadlines

 Completion of test case execution

 Completion of functional and code coverage to a certain point

 Bug rate falls below a certain level and no high-priority bugs are identified

 Management decision

Verification & Validation

These two terms are very confusing for most people, who use them interchangeably. The

following table highlights the differences between verification and validation.

S.N. Verification Validation

1 Verification addresses the concern:
"Are you building it right?"

Validation addresses the concern: "Are
you building the right thing?"

2 Ensures that the software system

meets all the functionality.

Ensures that the functionalities meet

the intended behavior.

3 Verification takes place first and

includes the checking for
documentation, code, etc.

Validation occurs after verification and

mainly involves the checking of the
overall product.

4 Done by developers. Done by testers.

5 It has static activities, as it includes

collecting reviews, walkthroughs, and
inspections to verify a software.

It has dynamic activities, as it includes

executing the software against the
requirements.

6 It is an objective process and no

subjective decision should be needed
to verify a software.

It is a subjective process and involves

subjective decisions on how well a
software works.

Software Testing

7

Given below are some of the most common myths about software testing.

Myth 1: Testing is Too Expensive

Reality: There is a saying, pay less for testing during software development or pay

more for maintenance or correction later. Early testing saves both time and cost in many

aspects, however reducing the cost without testing may result in improper design of a

software application rendering the product useless.

Myth 2: Testing is Time-Consuming

Reality: During the SDLC phases, testing is never a time-consuming process. However

diagnosing and fixing the errors identified during proper testing is a time-consuming but

productive activity.

Myth 3: Only Fully Developed Products are Tested

Reality: No doubt, testing depends on the source code but reviewing requirements and

developing test cases is independent from the developed code. However iterative or

incremental approach as a development life cycle model may reduce the dependency of

testing on the fully developed software.

Myth 4: Complete Testing is Possible

Reality: It becomes an issue when a client or tester thinks that complete testing is

possible. It is possible that all paths have been tested by the team but occurrence of

complete testing is never possible. There might be some scenarios that are never

executed by the test team or the client during the software development life cycle and

may be executed once the project has been deployed.

Myth 5: A Tested Software is Bug-Free

Reality: This is a very common myth that the clients, project managers, and the

management team believes in. No one can claim with absolute certainty that a software

application is 100% bug-free even if a tester with superb testing skills has tested the

application.

Myth 6: Missed Defects are due to Testers

Reality: It is not a correct approach to blame testers for bugs that remain in the

application even after testing has been performed. This myth relates to Time, Cost, and

Requirements changing Constraints. However the test strategy may also result in bugs

being missed by the testing team.

Myth 7: Testers are Responsible for Quality of Product

Reality: It is a very common misinterpretation that only testers or the testing team

should be responsible for product quality. Testers’ responsibilities include the

2. Myths

Software Testing

8

identification of bugs to the stakeholders and then it is their decision whether they will

fix the bug or release the software. Releasing the software at the time puts more

pressure on the testers, as they will be blamed for any error.

Myth 8: Test Automation should be used Wherever Possible to Reduce Time

Reality: Yes, it is true that Test Automation reduces the testing time, but it is not

possible to start test automation at any time during software development. Test

automaton should be started when the software has been manually tested and is stable

to some extent. Moreover, test automation can never be used if requirements keep

changing.

Myth 9: Anyone can Test a Software Application

Reality: People outside the IT industry think and even believe that anyone can test a

software and testing is not a creative job. However testers know very well that this is a

myth. Thinking alternative scenarios, try to crash a software with the intent to explore

potential bugs is not possible for the person who developed it.

Myth 10: A Tester’s Only Task is to Find Bugs

Reality: Finding bugs in a software is the task of the testers, but at the same time, they

are domain experts of the particular software. Developers are only responsible for the

specific component or area that is assigned to them but testers understand the overall

workings of the software, what the dependencies are, and the impacts of one module on

another module.

Software Testing

9

Testing, Quality Assurance, and Quality Control

Most people get confused when it comes to pin down the differences among Quality

Assurance, Quality Control, and Testing. Although they are interrelated and to some

extent, they can be considered as same activities, but there exist distinguishing points

that set them apart. The following table lists the points that differentiate QA, QC, and

Testing.

Quality Assurance Quality Control Testing

QA includes activities that

ensure the implementation

of processes, procedures

and standards in context to

verification of developed

software and intended

requirements.

It includes activities that

ensure the verification of a

developed software with

respect to documented (or

not in some cases)

requirements.

It includes activities

that ensure the

identification of

bugs/error/defects in a

software.

Focuses on processes and

procedures rather than

conducting actual testing on

the system.

Focuses on actual testing by

executing the software with

an aim to identify

bug/defect through

implementation of

procedures and process.

Focuses on actual

testing.

Process-oriented activities. Product-oriented activities.
Product-oriented

activities.

Preventive activities. It is a corrective process.
It is a preventive

process.

It is a subset of Software

Test Life Cycle (STLC).

QC can be considered as the

subset of Quality Assurance.

Testing is the subset of

Quality Control.

Audit and Inspection

Audit: It is a systematic process to determine how the actual testing process is

conducted within an organization or a team. Generally, it is an independent examination

of processes involved during the testing of a software. As per IEEE, it is a review of

3. QA, QC, and testing

Software Testing

10

documented processes that organizations implement and follow. Types of audit include

Legal Compliance Audit, Internal Audit, and System Audit.

Inspection: It is a formal technique that involves formal or informal technical reviews of

any artifact by identifying any error or gap. As per IEEE94, inspection is a formal

evaluation technique in which software requirements, designs, or codes are examined in

detail by a person or a group other than the author to detect faults, violations of

development standards, and other problems.

Formal inspection meetings may include the following processes: Planning, Overview

Preparation, Inspection Meeting, Rework, and Follow-up.

Testing and Debugging

Testing: It involves identifying bug/error/defect in a software without correcting it.

Normally professionals with a quality assurance background are involved in bugs

identification. Testing is performed in the testing phase.

Debugging: It involves identifying, isolating, and fixing the problems/bugs. Developers

who code the software conduct debugging upon encountering an error in the code.

Debugging is a part of White Box Testing or Unit Testing. Debugging can be performed in

the development phase while conducting Unit Testing or in phases while fixing the

reported bugs.

Software Testing

11

Many organizations around the globe develop and implement different standards to

improve the quality needs of their software. This chapter briefly describes some of the

widely used standards related to Quality Assurance and Testing.

ISO/IEC 9126

This standard deals with the following aspects to determine the quality of a software

application:

 Quality model

 External metrics

 Internal metrics

 Quality in use metrics

This standard presents some set of quality attributes for any software such as:

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

The above-mentioned quality attributes are further divided into sub-factors, which you

can study when you study the standard in detail.

ISO/IEC 9241-11

Part 11 of this standard deals with the extent to which a product can be used by

specified users to achieve specified goals with Effectiveness, Efficiency and Satisfaction

in a specified context of use.

This standard proposed a framework that describes the usability components and the

relationship between them. In this standard, the usability is considered in terms of user

performance and satisfaction. According to ISO 9241-11, usability depends on context of

use and the level of usability will change as the context changes.

ISO/IEC 25000:2005

ISO/IEC 25000:2005 is commonly known as the standard that provides the guidelines

for Software Quality Requirements and Evaluation (SQuaRE). This standard helps in

organizing and enhancing the process related to software quality requirements and their

4. ISO Standards

Software Testing

12

evaluations. In reality, ISO-25000 replaces the two old ISO standards, i.e. ISO-9126 and

ISO-14598.

SQuaRE is divided into sub-parts such as:

 ISO 2500n - Quality Management Division

 ISO 2501n - Quality Model Division

 ISO 2502n - Quality Measurement Division

 ISO 2503n - Quality Requirements Division

 ISO 2504n - Quality Evaluation Division

The main contents of SQuaRE are:

 Terms and definitions

 Reference Models

 General guide

 Individual division guides

 Standard related to Requirement Engineering (i.e. specification, planning,

measurement and evaluation process)

ISO/IEC 12119

This standard deals with software packages delivered to the client. It does not focus or

deal with the clients’ production process. The main contents are related to the following

items:

 Set of requirements for software packages.

 Instructions for testing a delivered software package against the specified

requirements.

Miscellaneous

Some of the other standards related to QA and Testing processes are mentioned below:

Standard Description

IEEE 829 A standard for the format of documents used in different stages of

software testing.

IEEE 1061

A methodology for establishing quality requirements, identifying,

implementing, analyzing, and validating the process, and product of

software quality metrics.

IEEE 1059 Guide for Software Verification and Validation Plans.

Software Testing

13

IEEE 1008 A standard for unit testing.

IEEE 1012 A standard for Software Verification and Validation.

IEEE 1028 A standard for software inspections.

IEEE 1044 A standard for the classification of software anomalies.

IEEE 1044-1 A guide for the classification of software anomalies.

IEEE 830 A guide for developing system requirements specifications.

IEEE 730 A standard for software quality assurance plans.

IEEE 1061 A standard for software quality metrics and methodology.

IEEE 12207 A standard for software life cycle processes and life cycle data.

BS 7925-1 A vocabulary of terms used in software testing.

BS 7925-2 A standard for software component testing.

Software Testing

14

This section describes the different types of testing that may be used to test a software

during SDLC.

Manual Testing

Manual testing includes testing a software manually, i.e., without using any automated

tool or any script. In this type, the tester takes over the role of an end-user and tests

the software to identify any unexpected behavior or bug. There are different stages for

manual testing such as unit testing, integration testing, system testing, and user

acceptance testing.

Testers use test plans, test cases, or test scenarios to test a software to ensure the

completeness of testing. Manual testing also includes exploratory testing, as testers

explore the software to identify errors in it.

Automation Testing

Automation testing, which is also known as Test Automation, is when the tester writes

scripts and uses another software to test the product. This process involves automation

of a manual process. Automation Testing is used to re-run the test scenarios that were

performed manually, quickly, and repeatedly.

Apart from regression testing, automation testing is also used to test the application

from load, performance, and stress point of view. It increases the test coverage,

improves accuracy, and saves time and money in comparison to manual testing.

What to Automate?

It is not possible to automate everything in a software. The areas at which a user can

make transactions such as the login form or registration forms, any area where large

number of users can access the software simultaneously should be automated.

5. Types of Testing

Software Testing

15

Furthermore, all GUI items, connections with databases, field validations, etc. can be

efficiently tested by automating the manual process.

When to Automate?

Test Automation should be used by considering the following aspects of a software:

 Large and critical projects

 Projects that require testing the same areas frequently

 Requirements not changing frequently

 Accessing the application for load and performance with many virtual users

 Stable software with respect to manual testing

 Availability of time

How to Automate?

Automation is done by using a supportive computer language like VB scripting and an

automated software application. There are many tools available that can be used to write

automation scripts. Before mentioning the tools, let us identify the process that can be

used to automate the testing process:

 Identifying areas within a software for automation

 Selection of appropriate tool for test automation

 Writing test scripts

 Development of test suits

 Execution of scripts

 Create result reports

 Identify any potential bug or performance issues

Software Testing Tools

The following tools can be used for automation testing:

 HP Quick Test Professional

 Selenium

 IBM Rational Functional Tester

 SilkTest

 TestComplete

 Testing Anywhere

 WinRunner

 LaodRunner

Software Testing

16

 Visual Studio Test Professional

 WATIR

Software Testing

17

There are different methods that can be used for software testing. This chapter briefly

describes the methods available.

Black-Box Testing

The technique of testing without having any knowledge of the interior workings of the

application is called black-box testing. The tester is oblivious to the system architecture

and does not have access to the source code. Typically, while performing a black-box

test, a tester will interact with the system's user interface by providing inputs and

examining outputs without knowing how and where the inputs are worked upon.

The following table lists the advantages and disadvantages of black-box testing.

Advantages Disadvantages

Well suited and efficient for large code

segments.

Limited coverage, since only a selected

number of test scenarios is actually

performed.

Code access is not required.

Inefficient testing, due to the fact that

the tester only has limited knowledge

about an application.

Clearly separates user's perspective from

the developer's perspective through visibly

defined roles.

Blind coverage, since the tester cannot

target specific code segments or error-

prone areas.

Large numbers of moderately skilled

testers can test the application with no

knowledge of implementation,

programming language, or operating

systems.

The test cases are difficult to design.

White-Box Testing

White-box testing is the detailed investigation of internal logic and structure of the code.

White-box testing is also called glass testing or open-box testing. In order to perform

white-box testing on an application, a tester needs to know the internal workings of the

code.

6. Testing Methods

Software Testing

18

The tester needs to have a look inside the source code and find out which unit/chunk of

the code is behaving inappropriately.

The following table lists the advantages and disadvantages of white-box testing.

Advantages Disadvantages

 As the tester has knowledge of the

source code, it becomes very easy

to find out which type of data can

help in testing the application

effectively.

 It helps in optimizing the code.

 Extra lines of code can be removed

which can bring in hidden defects.

 Due to the tester's knowledge

about the code, maximum coverage

is attained during test scenario

writing.

 Due to the fact that a skilled tester is

needed to perform white-box testing,

the costs are increased.

 Sometimes it is impossible to look into

every nook and corner to find out

hidden errors that may create

problems, as many paths will go

untested.

 It is difficult to maintain white-box

testing, as it requires specialized tools

like code analyzers and debugging

tools.

Grey-Box Testing

Grey-box testing is a technique to test the application with having a limited knowledge of

the internal workings of an application. In software testing, the phrase the more you

know, the better carries a lot of weight while testing an application.

Mastering the domain of a system always gives the tester an edge over someone with

limited domain knowledge. Unlike black-box testing, where the tester only tests the

application's user interface; in grey-box testing, the tester has access to design

documents and the database. Having this knowledge, a tester can prepare better test

data and test scenarios while making a test plan.

Advantages Disadvantages

 Offers combined benefits of black-box

and white-box testing wherever

possible.

 Grey box testers don't rely on the

source code; instead they rely on

interface definition and functional

specifications.

 Based on the limited information

available, a grey-box tester can

design excellent test scenarios

especially around communication

 Since the access to source code is not

available, the ability to go over the

code and test coverage is limited.

 The tests can be redundant if the

software designer has already run a

test case.

 Testing every possible input stream is

unrealistic because it would take an

unreasonable amount of time;

therefore, many program paths will

Software Testing

19

protocols and data type handling.

 The test is done from the point of

view of the user and not the designer.

go untested.

A Comparison of Testing Methods

The following table lists the points that differentiate black-box testing, grey-box testing,

and white-box testing.

Black-Box Testing Grey-Box Testing White-Box Testing

The internal workings of

an application need not

be known.

The tester has limited

knowledge of the internal

workings of the application.

Tester has full knowledge

of the internal workings of

the application.

Also known as closed-box

testing, data-driven

testing, or functional

testing.

Also known as translucent

testing, as the tester has

limited knowledge of the

insides of the application.

Also known as clear-box

testing, structural testing,

or code-based testing.

Performed by end-users

and also by testers and

developers.

Performed by end-users and

also by testers and

developers.

Normally done by testers

and developers.

Testing is based on

external expectations -

Internal behavior of the

application is unknown.

Testing is done on the basis

of high-level database

diagrams and data flow

diagrams.

Internal workings are fully

known and the tester can

design test data

accordingly.

It is exhaustive and the

least time-consuming.

Partly time-consuming and

exhaustive.

The most exhaustive and

time-consuming type of

testing.

Not suited for algorithm

testing.

Not suited for algorithm

testing.

Suited for algorithm

testing.

This can only be done by

trial-and-error method.

Data domains and internal

boundaries can be tested, if

known.

Data domains and internal

boundaries can be better

tested.

Software Testing

20

There are different levels during the process of testing. In this chapter, a brief

description is provided about these levels.

Levels of testing include different methodologies that can be used while conducting

software testing. The main levels of software testing are:

 Functional Testing

 Non-functional Testing

Functional Testing

This is a type of black-box testing that is based on the specifications of the software that

is to be tested. The application is tested by providing input and then the results are

examined that need to conform to the functionality it was intended for. Functional

testing of a software is conducted on a complete, integrated system to evaluate the

system's compliance with its specified requirements.

There are five steps that are involved while testing an application for functionality.

Steps Description

I The determination of the functionality that the intended application is

meant to perform.

II The creation of test data based on the specifications of the application.

III The output based on the test data and the specifications of the application.

IV The writing of test scenarios and the execution of test cases.

V The comparison of actual and expected results based on the executed test

cases.

An effective testing practice will see the above steps applied to the testing policies of

every organization and hence it will make sure that the organization maintains the

strictest of standards when it comes to software quality.

Unit Testing

This type of testing is performed by developers before the setup is handed over to the

testing team to formally execute the test cases. Unit testing is performed by the

respective developers on the individual units of source code assigned areas. The

7. Testing Levels

Software Testing

21

developers use test data that is different from the test data of the quality assurance

team.

The goal of unit testing is to isolate each part of the program and show that individual

parts are correct in terms of requirements and functionality.

Limitations of Unit Testing

Testing cannot catch each and every bug in an application. It is impossible to evaluate

every execution path in every software application. The same is the case with unit

testing.

There is a limit to the number of scenarios and test data that a developer can use to

verify a source code. After having exhausted all the options, there is no choice but to

stop unit testing and merge the code segment with other units.

Integration Testing

Integration testing is defined as the testing of combined parts of an application to

determine if they function correctly. Integration testing can be done in two ways:

Bottom-up integration testing and Top-down integration testing.

S.N. Integration Testing Method

1 Bottom-up integration

This testing begins with unit testing, followed by tests of progressively higher-

level combinations of units called modules or builds.

2 Top-down integration

In this testing, the highest-level modules are tested first and progressively,

lower-level modules are tested thereafter.

In a comprehensive software development environment, bottom-up testing is usually

done first, followed by top-down testing. The process concludes with multiple tests of the

complete application, preferably in scenarios designed to mimic actual situations.

System Testing

System testing tests the system as a whole. Once all the components are integrated, the

application as a whole is tested rigorously to see that it meets the specified Quality

Standards. This type of testing is performed by a specialized testing team.

System testing is important because of the following reasons:

 System testing is the first step in the Software Development Life Cycle, where the

application is tested as a whole.

 The application is tested thoroughly to verify that it meets the functional and

technical specifications.

Software Testing

22

 The application is tested in an environment that is very close to the production

environment where the application will be deployed.

 System testing enables us to test, verify, and validate both the business

requirements as well as the application architecture.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other

areas within the application have been affected by this change. Regression testing is

performed to verify that a fixed bug hasn't resulted in another functionality or business

rule violation. The intent of regression testing is to ensure that a change, such as a bug

fix should not result in another fault being uncovered in the application.

Regression testing is important because of the following reasons:

 Minimize the gaps in testing when an application with changes made has to be

tested.

 Testing the new changes to verify that the changes made did not affect any other

area of the application.

 Mitigates risks when regression testing is performed on the application.

 Test coverage is increased without compromising timelines.

 Increase speed to market the product.

Acceptance Testing

This is arguably the most important type of testing, as it is conducted by the Quality

Assurance Team who will gauge whether the application meets the intended

specifications and satisfies the client’s requirement. The QA team will have a set of pre-

written scenarios and test cases that will be used to test the application.

More ideas will be shared about the application and more tests can be performed on it to

gauge its accuracy and the reasons why the project was initiated. Acceptance tests are

not only intended to point out simple spelling mistakes, cosmetic errors, or interface

gaps, but also to point out any bugs in the application that will result in system crashes

or major errors in the application.

By performing acceptance tests on an application, the testing team will deduce how the

application will perform in production. There are also legal and contractual requirements

for acceptance of the system.

Alpha Testing

This test is the first stage of testing and will be performed amongst the teams

(developer and QA teams). Unit testing, integration testing and system testing when

combined together is known as alpha testing. During this phase, the following aspects

will be tested in the application:

 Spelling Mistakes

 Broken Links

Software Testing

23

 Cloudy Directions

 The Application will be tested on machines with the lowest specification to test

loading times and any latency problems.

Beta Testing

This test is performed after alpha testing has been successfully performed. In beta

testing, a sample of the intended audience tests the application. Beta testing is also

known as pre-release testing. Beta test versions of software are ideally distributed to

a wide audience on the Web, partly to give the program a "real-world" test and partly to

provide a preview of the next release. In this phase, the audience will be testing the

following:

 Users will install, run the application and send their feedback to the project team.

 Typographical errors, confusing application flow, and even crashes.

 Getting the feedback, the project team can fix the problems before releasing the

software to the actual users.

 The more issues you fix that solve real user problems, the higher the quality of

your application will be.

 Having a higher-quality application when you release it to the general public will

increase customer satisfaction.

Non-Functional Testing

This section is based upon testing an application from its non-functional attributes. Non-

functional testing involves testing a software from the requirements which are

nonfunctional in nature but important such as performance, security, user interface, etc.

Some of the important and commonly used non-functional testing types are discussed

below.

Performance Testing

It is mostly used to identify any bottlenecks or performance issues rather than finding

bugs in a software. There are different causes that contribute in lowering the

performance of a software:

 Network delay

 Client-side processing

 Database transaction processing

 Load balancing between servers

 Data rendering

Performance testing is considered as one of the important and mandatory testing type in

terms of the following aspects:

 Speed (i.e. Response Time, data rendering and accessing)

Software Testing

24

 Capacity

 Stability

 Scalability

Performance testing can be either qualitative or quantitative and can be divided into

different sub-types such as Load testing and Stress testing.

Load Testing

It is a process of testing the behavior of a software by applying maximum load in terms

of software accessing and manipulating large input data. It can be done at both normal

and peak load conditions. This type of testing identifies the maximum capacity of

software and its behavior at peak time.

Most of the time, load testing is performed with the help of automated tools such as

Load Runner, AppLoader, IBM Rational Performance Tester, Apache JMeter, Silk

Performer, Visual Studio Load Test, etc.

Virtual users (VUsers) are defined in the automated testing tool and the script is

executed to verify the load testing for the software. The number of users can be

increased or decreased concurrently or incrementally based upon the requirements.

Stress Testing

Stress testing includes testing the behavior of a software under abnormal conditions. For

example, it may include taking away some resources or applying a load beyond the

actual load limit.

The aim of stress testing is to test the software by applying the load to the system and

taking over the resources used by the software to identify the breaking point. This

testing can be performed by testing different scenarios such as:

 Shutdown or restart of network ports randomly

 Turning the database on or off

 Running different processes that consume resources such as CPU, memory,

server, etc.

Usability Testing

Usability testing is a black-box technique and is used to identify any error(s) and

improvements in the software by observing the users through their usage and operation.

According to Nielsen, usability can be defined in terms of five factors, i.e. efficiency of

use, learn-ability, memory-ability, errors/safety, and satisfaction. According to him, the

usability of a product will be good and the system is usable if it possesses the above

factors.

Nigel Bevan and Macleod considered that usability is the quality requirement that can be

measured as the outcome of interactions with a computer system. This requirement can

be fulfilled and the end-user will be satisfied if the intended goals are achieved

effectively with the use of proper resources.

Software Testing

25

Molich in 2000 stated that a user-friendly system should fulfill the following five goals,

i.e., easy to Learn, easy to remember, efficient to use, satisfactory to use, and easy to

understand.

In addition to the different definitions of usability, there are some standards and quality

models and methods that define usability in the form of attributes and sub-attributes

such as ISO-9126, ISO-9241-11, ISO-13407, and IEEE std.610.12, etc.

UI vs Usability Testing

UI testing involves testing the Graphical User Interface of the Software. UI testing

ensures that the GUI functions according to the requirements and tested in terms of

color, alignment, size, and other properties.

On the other hand, usability testing ensures a good and user-friendly GUI that can be

easily handled. UI testing can be considered as a sub-part of usability testing.

Security Testing

Security testing involves testing a software in order to identify any flaws and gaps from

security and vulnerability point of view. Listed below are the main aspects that security

testing should ensure:

 Confidentiality

 Integrity

 Authentication

 Availability

 Authorization

 Non-repudiation

 Software is secure against known and unknown vulnerabilities

 Software data is secure

 Software is according to all security regulations

 Input checking and validation

 SQL insertion attacks

 Injection flaws

 Session management issues

 Cross-site scripting attacks

 Buffer overflows vulnerabilities

 Directory traversal attacks

Software Testing

26

Portability Testing

Portability testing includes testing a software with the aim to ensure its reusability and

that it can be moved from another software as well. Following are the strategies that can

be used for portability testing:

 Transferring an installed software from one computer to another.

 Building executable (.exe) to run the software on different platforms.

Portability testing can be considered as one of the sub-parts of system testing, as this

testing type includes overall testing of a software with respect to its usage over different

environments. Computer hardware, operating systems, and browsers are the major

focus of portability testing. Some of the pre-conditions for portability testing are as

follows:

 Software should be designed and coded, keeping in mind the portability

requirements.

 Unit testing has been performed on the associated components.

 Integration testing has been performed.

 Test environment has been established.

Software Testing

27

Testing documentation involves the documentation of artifacts that should be developed

before or during the testing of Software.

Documentation for software testing helps in estimating the testing effort required, test

coverage, requirement tracking/tracing, etc. This section describes some of the

commonly used documented artifacts related to software testing such as:

 Test Plan

 Test Scenario

 Test Case

 Traceability Matrix

Test Plan

A test plan outlines the strategy that will be used to test an application, the resources

that will be used, the test environment in which testing will be performed, and the

limitations of the testing and the schedule of testing activities. Typically the Quality

Assurance Team Lead will be responsible for writing a Test Plan.

A test plan includes the following:

 Introduction to the Test Plan document

 Assumptions while testing the application

 List of test cases included in testing the application

 List of features to be tested

 What sort of approach to use while testing the software

 List of deliverables that need to be tested

 The resources allocated for testing the application

 Any risks involved during the testing process

 A schedule of tasks and milestones to be achieved

Test Scenario

It is a one line statement that notifies what area in the application will be tested. Test

scenarios are used to ensure that all process flows are tested from end to end. A

particular area of an application can have as little as one test scenario to a few hundred

scenarios depending on the magnitude and complexity of the application.

The terms 'test scenario' and 'test cases' are used interchangeably, however a test

scenario has several steps, whereas a test case has a single step. Viewed from this

perspective, test scenarios are test cases, but they include several test cases and the

8. Documentation

Software Testing

28

sequence that they should be executed. Apart from this, each test is dependent on the

output from the previous test.

Test Case

Test cases involve a set of steps, conditions, and inputs that can be used while

performing testing tasks. The main intent of this activity is to ensure whether a software

passes or fails in terms of its functionality and other aspects. There are many types of

test cases such as functional, negative, error, logical test cases, physical test cases, UI

test cases, etc.

Furthermore, test cases are written to keep track of the testing coverage of a software.

Generally, there are no formal templates that can be used during test case writing.

However, the following components are always available and included in every test case:

 Test case ID

 Product module.

 Product version

 Revision history

 Purpose

 Assumptions

 Pre-conditions

 Steps

 Expected outcome.

 Actual outcome

 Post-conditions

Many test cases can be derived from a single test scenario. In addition, sometimes

multiple test cases are written for a single software which are collectively known as test

suites.

Software Testing

29

Traceability Matrix

Traceability Matrix (also known as Requirement Traceability Matrix - RTM) is a table that

is used to trace the requirements during the Software Development Life Cycle. It can be

used for forward tracing (i.e. from Requirements to Design or Coding) or backward (i.e.

from Coding to Requirements). There are many user-defined templates for RTM.

Each requirement in the RTM document is linked with its associated test case so that

testing can be done as per the mentioned requirements. Furthermore, Bug ID is also

included and linked with its associated requirements and test case. The main goals for

this matrix are:

 Make sure the software is developed as per the mentioned requirements.

 Helps in finding the root cause of any bug.

 Helps in tracing the developed documents during different phases of SDLC.

Software Testing

30

Estimating the efforts required for testing is one of the major and important tasks in

SDLC. Correct estimation helps in testing the software with maximum coverage. This

section describes some of the techniques that can be useful in estimating the efforts

required for testing.

Functional Point Analysis

This method is based on the analysis of functional user requirements of the software

with the following categories:

 Outputs

 Inquiries

 Inputs

 Internal files

 External files

Test Point Analysis

This estimation process is used for function point analysis for black-box or acceptance

testing. The main elements of this method are: Size, Productivity, Strategy, Interfacing,

Complexity, and Uniformity.

Mark-II Method

It is an estimation method used for analyzing and measuring the estimation based on

end-user’s functional view. The procedure for Mark-II method is as follows:

 Determine the viewpoint

 Purpose and type of count

 Define the boundary of count

 Identify the logical transactions

 Identify and categorize data entity types

 Count the input data element types

 Count the functional size

Miscellaneous

You can use other popular estimation techniques such as:

 Delphi Technique

9. Estimation Techniques

Software Testing

31

 Analogy Based Estimation

 Test Case Enumeration Based Estimation

 Task (Activity) based Estimation

 IFPUG method

