1- For the following cash flow diagram, determine the equivalent value in year $\mathbf{5}$ ($\mathbf{i}=\mathbf{1 2 \%}$).

$\mathrm{P}_{0}=21,000+13,000(\mathrm{P} / \mathrm{A}, 12 \%, 3)+13,000(\mathrm{P} / \mathrm{A}, 10 \%, 12 \%, 7)(\mathrm{P} / \mathrm{F}, 12 \%, 3)$
$(\mathrm{P} / \mathrm{A}, 10 \%, 12 \%, 7)=\frac{1}{E-i} *\left[\frac{(1+E)^{n}}{(1+i)^{n}}-1\right]=\frac{1}{0.1-0.12} *\left[\frac{(1+0.1)^{7}}{(1+0.12)^{7}}-1\right]=5.92$
$\mathrm{P}_{0}=115,049.8$
$\mathrm{F}_{5}=115,049.8(\mathrm{~F} / \mathrm{P}, 12 \%, 5)=202,752.26$

2- Find the value of the unknown quantity in the cash flow diagram shown below, to establish equivalences of cash inflows and outflows ($\mathrm{i}=\% 8$).

Since cash inflows and outflows are equivalent, their values are equal at a given time for example in your -1.
$100(\mathrm{P} / \mathrm{A}, 8 \%, 4)+100(\mathrm{P} / \mathrm{G}, 8 \%, 4)+500(\mathrm{P} / \mathrm{A}, 8 \%, 4) *(\mathrm{P} / \mathrm{F}, 8 \%, 6)=\mathrm{X}(\mathrm{P} / \mathrm{A}, 8 *, 5) *(\mathrm{P} / \mathrm{F}, 8 \%, 5)$ $X=677.17$

3- What is the present value of the following cash flow diagram? ($\mathrm{i}=\boldsymbol{\%} 10$)

Years

Increasing arithmetic series $/ \mathrm{P}_{1} \quad$ Uniform-amount series $/ \mathrm{P}_{2} \quad$ Decreasing arithmetic series $/ \mathrm{P}_{3}$
$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}=$ the present value of all three series
$\mathrm{P}_{1}=100(\mathrm{P} / \mathrm{A}, 10 \%, 5)+50(\mathrm{P} / \mathrm{G}, 10 \%, 5)=722$
$\mathrm{P}_{2}=300(\mathrm{P} / \mathrm{A}, 10 \%, 3) *(\mathrm{P} / \mathrm{F}, 10 \%, 5)=461.28$
$\mathrm{P}_{3}=[300(\mathrm{P} / \mathrm{A}, 10 \%, 5)-50(\mathrm{P} / \mathrm{G}, 10 \%, 5)] *(\mathrm{P} / \mathrm{F}, 10 \%, 8)=365.24$
$\mathrm{P}=1,548.52$

4- Find the present value of the following cash flow diagram (i= \%10).

$\mathrm{P}_{\mathrm{g}}=\mathrm{D} *(\mathrm{P} / \mathrm{A}, \mathrm{E} \%, \mathrm{i} \%, \mathrm{n}) *(\mathrm{P} / \mathrm{F}, 10 \%, 1)=3,000 *(\mathrm{P} / \mathrm{A}, 6 \%, 10 \%, 3) *(\mathrm{P} / \mathrm{F}, 10 \%, 1)=$ $3,000 * 2.629 * 0.9091=7,170.89$
$(\mathrm{P} / \mathrm{A}, 6 \%, 10 \%, 3)=\frac{1}{E-i} *\left[\frac{(1+E)^{n}}{(1+i)^{n}}-1\right]=\frac{1}{0.06-0.1} *\left[\frac{(1+0.06)^{3}}{(1+0.1)^{3}}-1\right]=2.629$
$\mathrm{P}_{\mathrm{G}}=[5,000(\mathrm{P} / \mathrm{A}, 10 \%, 6)-200(\mathrm{P} / \mathrm{G}, 10 \%, 6)] *(\mathrm{P} / \mathrm{F}, 10 \%, 4)=13,550.49$
$\mathrm{P}=\mathrm{P}_{\mathrm{g}+} \mathrm{P}_{\mathrm{G}}=20,721.38$

