

EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF INDUSTRIAL ENGINEERING INFORMATION SYSTEMS AND TECHNOLOGY IENG 372 / MANE 372 – Tutorial 1 Fall 2021-2022

Lecturer : Khaoula Chnina

Question 1:

A project has been defined to contain the list of activities shown in Table 1.

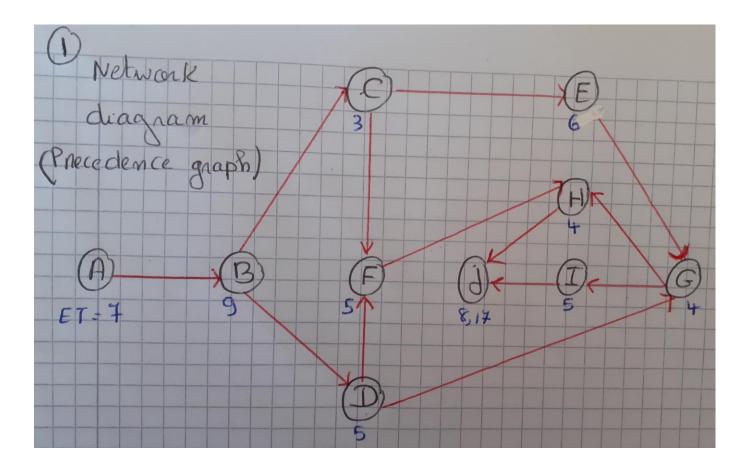
Table 1

Task Number	Task	Optimistic time	Most Likely time	Pessimistic time	Predecessors
Α	Collect requirements	3	7	11	-
В	Analyze processes	5	9	13	А
C	Analyze data	1	2	9	В
D	Design processes	2	3	16	В
E	Design data	2	4	18	С
F	Design screens	3	4	11	C,D
G	Design reports	1	4	7	D,E
Н	Program	3	4	5	F,G
Ι	Test and Document	2	4	12	G
J	Install	4	9	9	Н

- 1- Calculate the expected time for each task.
- 2- Draw a Network Diagram for the activities.
- 3- Show the critical path.
- 4- Construct a Gantt chart for the project according to the table 2.
- 5- What would happen if activity F were revised to take 9 weeks?
- 6- What would happen if activity F were revised to take 10 weeks?
- 7- What would happen if activity C were revised to take 4 weeks?
- 8- What would happen if activity C were revised to take 2 weeks?

Table 2

Activity	Start	END
A	0	7
В	7	16
C	16	19
D	16	21
E	19	25
F	21	26
G	25	29
Н	29	33
Ι	29	34
J	34	42,17


1- Calculate the expected time for each task.

Task Number	Task	Optimistic time o	Most Likely time r	Pessimistic time p	Predecessors	Expected Completion Time (ET)
А	Collect requirements	3	7	11	-	7
В	Analyze processes	5	9	13	А	9
С	Analyze data	1	2	9	В	3
D	Design processes	2	3	16	В	5
E	Design data	2	4	18	С	6
F	Design screens	3	4	11	C,D	5
G	Design reports	1	4	7	D,E	4
Н	Program	3	4	5	F,G	4
Ι	Test and Document	2	4	12	G	5
J	Install	4	9	9	Н	8,166667

$$ET = \frac{o+4r+p}{6}$$

2- Network Diagram

Activity t	Predecessors t-1	Successors t+1
А	-	В
В	А	C,D
C	В	E,F
D	В	G,F
Е	С	G
F	C,D	Н
G	D,E	H,I
Н	F,G	J
Ι	G	J
J	H,I	-

3- Critical Path

How to determine the critical path :

- 1. calculate the earliest expected completion time for each activity (T_E) .
- 2. calculate the latest expected completion time for each activity (T_L) .
- 3. Calculate the slack time for each activity.
- 4. All activities with a slack time equal to zero are on the critical path

NB: The order of activities is according to the Network Diagram

Notations:

For each activity t, let the preceding activities be t-1 and the succeeding activities t+1

n = number of activities

The earliest expected completion time (T_E)

Start from t = 1 to t = n

 $T_E(t) = ET(t) + \max\{T_E(t-1)\}$

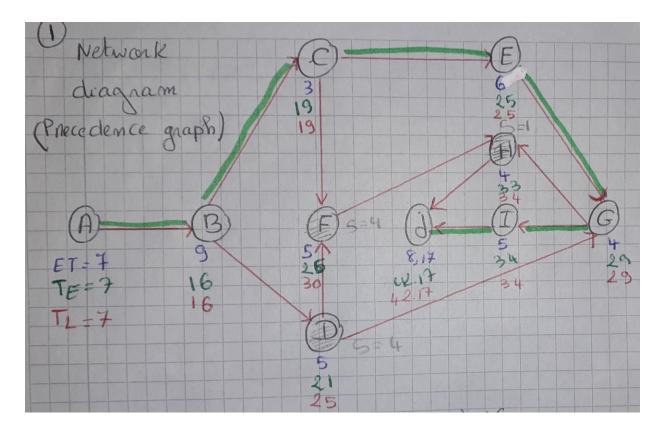
The latest expected completion time (T_L) Start from t=n to t=1

 $T_L(n) = T_E(n)$ $T_L(t) = \min\{T_L(t+1) - ET(t+1)\}$ Slack (t) = $T_L(t) - T_E(t)$

T_E and T_L

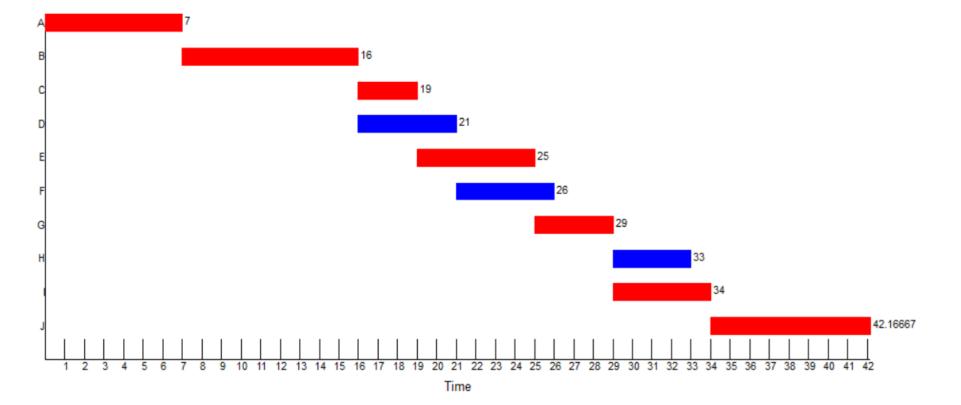
The earliest expected completion time (T_E)

$$T_E(t) = ET(t) + max\{T_E(t-1)\}$$

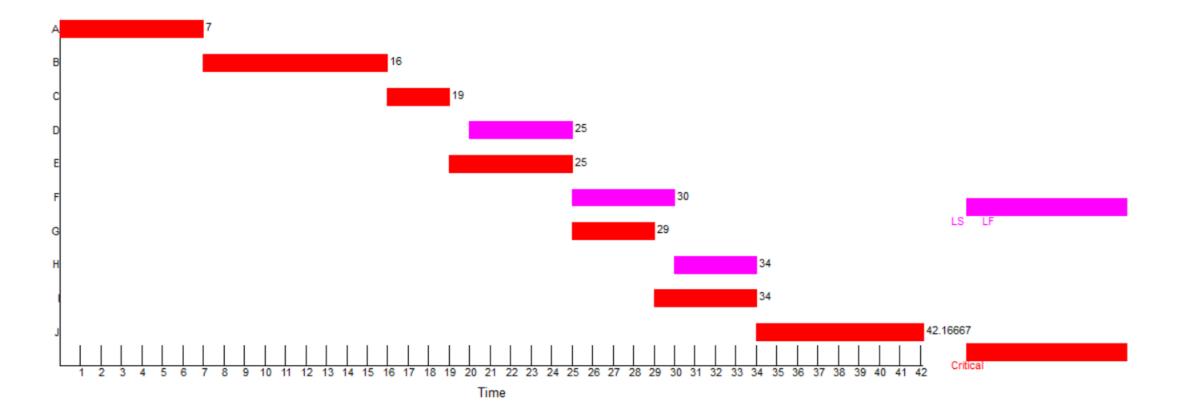

The latest expected completion time (T_L)

$$T_L(t) = \min\{T_L(t+1) - ET(t+1)\}$$

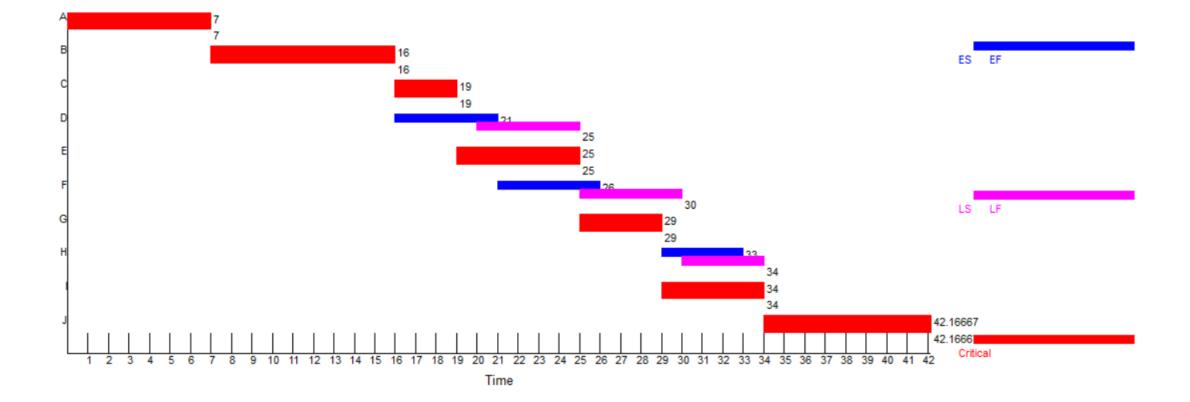
Activity t	Expected Completion Time (ET)	Predecessors t-1	max{ T _E (t-1)}	T _E	Successors t+1	Min { T_L (t+1)-ET(t+1) }	T_L
A	7	-	-	7	В	min{16-9}=7	7
В	9	А	7	9+7= <mark>16</mark>	C,D	$\min\{19-3,25-5\}=\min\{16,20\}$	16
C	3	В	16	3+16 <mark>=19</mark>	E,F	min{25-6,30-5}=min{19,25}	19
D	5	В	16	5+16 <mark>=21</mark>	G,F	min{29-4,30-5}=min{25,25}	25
Е	6	С	19	6+19 <mark>=25</mark>	G	min{29-4}=25	25
F	5	C,D	max{19,21}=21	5+21 <mark>=26</mark>	Н	min{34-4}=30	30
G	4	D,E	max{21,25}=25	4+25 <mark>=29</mark>	H,I	$\min{34-5,34-4}=\min{29,30}$	29
Н	4	F,G	max{26,29}=29	4+29 <mark>=33</mark>	J	min{42.17-8.17}=34	34
Ι	5	G	29	5+29 <mark>=34</mark>	J	min{42.17-8.17}=34	34
J	8,166667	H,I	max{33,34}=34	8,17+34=42,17	_	-	42,17


Slack Times and Critical Path

Activity	Expected Completion Time (ET)	T_E	T_L	Slack	On Critical Path
А	7	7	7	0	YES
В	9	16	16	0	YES
С	3	19	19	0	YES
D	5	21	25	4	NO
Е	6	25	25	0	YES
F	5	26	30	4	NO
G	4	29	29	0	YES
Н	4	33	34	1	NO
Ι	5	34	34	0	YES
J	8,1667	42,17	42,17	0	YES



4- Gantt Chart


Activity	Start	END
Α	0	7
В	7	16
C	16	19
D	16	21
Е	19	25
F	21	26
G	25	29
Н	29	33
Ι	29	34
J	34	42,17

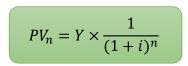
Remarque: If Start and end times are not given, the following Gantt Charts are also correct

Gantt chart (Early and Late times)

5- What would happen if activity F were revised to take 9 weeks?

Activity F is NOT on the Critical Path, with slack time = 4, which means that we can delay it by 4 weeks without delaying the project completion time. If activity F takes 9 weeks instead of 5 weeks, 9-5=4 = slack, then the project completion time will not change.

6- What would happen if activity F were revised to take 10 weeks?


- 10-5=5 > slack, The project will be delayed by 5-4=1 week.
- 7- What would happen if activity C were revised to take 4 weeks?
- Activity C in ON the critical path, if it is delayed then the project completion time will be delayed as well.
- If activity C takes 4 week instead of 3 weeks the project will be delayed by 4-3=1 week.
- 8- What would happen if activity C were revised to take 2 weeks?
- 2-3=-1, the project will finish 1 week earlier.

Question 2

Assume monetary benefits of an information system of \$40,000 the first year and increasing benefits of \$10,000 a year for the next five years (year 1 = \$50,000, year 2 = \$60,000, year 3 =\$70,000, year 4 = \$80,000, year 5 = \$90,000). Onetime development costs were \$80,000 and recurring costs were \$45,000 over the duration of the system's life. The discount rate for the company was 11 percent. Using a six-year time horizon, calculate the net present value of these costs and benefits. Also, calculate the overall return on investment and then present a break-even analysis. At what point does break-even occur?

Summary Worksheet

- The yearly NPV cash flows = PV of benefits PV of costs
- Overall NPV cash flows = NVP of benefits NVP of costs

- <u>break-even</u> occurs before the first year in which the <u>overall NPV cash flows figure is non-negative</u>
- Identifying the point when Break even occurs can be derived as follows:

 $Break-Even Ratio = \frac{Yearly NPV Cash Flow - Overall NPV Cash Flow}{Yearly NPV Cash Flow}$

Year		0	1	2	3	4	5	6	Totals		
Net Economic Benefits		\$0,00	\$40.000,00	\$50.000,00	\$60.000,00	\$70.000,00	\$80.000,00	\$90.000,00			
Discount Rate	11%	1,0000	1,1100	1,2321	1,3676	1,5181	1,6851	1,8704			
Present Value of Benefits (PV)		\$0,00	\$36.036,04	\$40.581,12	\$43.871,48	\$46.111,17	\$47.476,11	\$48.117,68			PVBj
Net Present Value Of benefits (NPV) (Cumul PV)		\$0,00	\$36.036,04	\$76.617,16	\$120.488,64	\$166.599,81	\$214.075,92	\$262.193,59	\$262.193,59	cumul benefits	СВ
One time Costs		\$80.000,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00			
PV of One time Costs		\$80.000,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00			
Recurring Cost		\$0,00	\$45.000,00	\$45.000,00	\$45.000,00	\$45.000,00	\$45.000,00	\$45.000,00			
PV of Recurring Costs		\$0,00	\$40.540,54	\$36.523,01	\$32.903,61	\$29.642,89	\$26.705,31	\$24.058,84			
PV OF ALL Costs		\$80.000,00	\$40.540,54	\$36.523,01	\$32.903,61	\$29.642,89	\$26.705,31	\$24.058,84			PVCj
NPV of ALL costs		\$80.000,00	\$120.540,54	\$157.063,55	\$189.967,16	\$219.610,06	\$246.315,37	\$270.374,20	\$270.374,20	cumul costs	СС
Overall NPV									-\$8.180,61		CB-CC
Overall Return In Investment (ORI)									-0,030256633		(CB-CC)/CC
Break Even Analysis											
fearly NPV cash flow		-\$80.000,00	-\$4.504,50	\$4.058,11	\$10.967,87	\$16.468,27	\$20.770,80	\$24.058,84			PVBj-PVCj
Overall NPV cash flow		-\$80.000,00		-\$80.446,39		-\$53.010,25	-\$32.239,45	-\$8.180,61			CBj-CCj
				Project bro	aak even does n	ot occur before 6 y	aars				
				i i ojeci bit		be been before by	curs				
Break Even Ratio											
				NO break eve	en before 6 year	s >>> INFEASIBLE PP	ROJECT				
					-	give any benefits, w					
			econo	omic point of v	lew , We concl	ude that we should	edit the project or	cancel it			

Assume monetary benefits of an information system at \$70,000 per year. Onetime development costs were \$80,000 and recurring costs were \$40,000 over the duration of the system's life. The discount rate for the company was 10 percent. Using a five-year time horizon:

1-calculate the net present value of these costs and benefits

2-calculate the overall return on investment

3-present a break-even analysis.

4-At what point does break-even occur?

NB: Provide the used formulas and detailed calculations.

Year		0	1	2	3	4	5	Totals		
Net Economic Benefits		\$0,00	\$70.000,00	\$70.000,00	\$70.000,00	\$70.000,00	\$70.000,00			
Discount Rate	10%	1,0000	1,1000	1,2100	1,3310	1,4641	1,6105			
Present Value of Benefits (PV)		\$0,00	\$63.636,36	\$57.851,24	\$52.592,04	\$47.810,94	\$43.464,49			PVBj
Net Present Value Of benefits (NPV) (Cumul PV)		\$0,00	\$63.636,36	\$121.487,60	\$174.079,64	\$221.890,58	\$265.355,07	\$265.355,07	cumul benefits	СВ
One time Costs		\$80.000,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00			
PV of One time Costs		\$80.000,00	\$0,00	\$0,00	\$0,00	\$0,00	\$0,00			
Recurring Cost		\$0,00	\$40.000,00	\$40.000,00	\$40.000,00	\$40.000,00	\$40.000,00			
PV of Recurring Costs		\$0,00	\$36.363,64	\$33.057,85	\$30.052,59	\$27.320,54	\$24.836,85			
PV OF ALL Costs		\$80.000,00	\$36.363,64	\$33.057,85		\$27.320,54	\$24.836,85			PVCj
NPV of ALL costs		\$80.000,00	\$116.363,64	\$149.421,49	\$179.474,08	\$206.794,62	\$231.631,47	\$231.631,47	cumul costs	CC
Overall NPV								\$33.723,60		CB-CC
Overall Return In Investment (ORI)								0,145591629		(CB-CC)/CC
Break Even Analysis										
Yearly NPV cash flow		-\$80.000,00	\$27.272,73	\$24.793,39	\$22.539,44	\$20.490,40	\$18.627,64			PVBj-PVCj
Overall NPV cash flow		-\$80.000,00	-\$52.727,27	-\$27.933,88	-\$5.394,44	\$15.095,96	\$33.723,60			CBj-CCj
			Projec	t break even C	Occurs between	years 3 and 4.				
Break Even Ratio						0,26				
				The break eve	n occurs at 3,2	6 years.				
				asible in the e	conomic point	ng benefits after 3,2 of view , We conclu the system analysis	de that we can go			