
 

BallBounce: A simple game app 
 

In this tutorial, you will learn about animation in App Inventor by making a Ball (a sprite) bounce around 

on the screen (on a Canvas). 

 

If you have another project open, go to My Projects menu and choose New Project. 
 

Start a New Project 



 

 

 

Call it something like "BallBounce". Remember, no spaces. But underscores are OK. 
 

 

From the Drawing and Animation drawer, drag out a Canvas component and drop it onto the viewer. 
 

Name the Project 

Add a Canvas 



Set the Screen so that it does not scroll 

 

The default setting for App Inventor is that the screen of your app will be "scrollable", which means that 

the user interface can go beyond the limit of the screen and the user can scroll down by swiping their 

finger (like scrolling on a web page). When you are using a Canvas, you have to turn off the 

"Scrollable" setting (UNCHECK THE BOX) so that the screen does not scroll. This will allow you to 

make the Canvas to fill up the whole screen. 



Change the Height and Width of the Canvas to Fill Parent 

 

Make sure the Canvas component is selected (#1) so that its properties show up in the Properties Pane 

(#2). Down at the bottom, set the Height property to "Fill Parent". Do the same with the Width 

property. 



Add a Ball 

 

Now that we have a Canvas in place, we can add a Ball Sprite. This can also be found in the Drawing 

and Animation drawer. Drag out a Ball component and drop it onto the Canvas (#1). If you'd like the 

ball to show up better, you can change its Radius property in the Properties pane (#2). 

 

 

Open the Blocks Editor. 



Open the Ball1 Drawer to view the Ball's blocks. 

 

 

 

 

Choose the block when Ball1.Flung and drag-and-drop it onto the workspace. Flung refers to the user 

making a "Fling gesture" with his/her finger to "fling" the ball. Fling is a gesture like what a golf club 

does, not like how you launch Angry Birds! In App Inventor, the event handler for that type of gesture is 

called when Flung. 

 
 

Drag out the Flung Event Handler 



Set the Ball's Heading and Speed. First get the setter blocks. 

 

Open the Ball drawer and scroll down in the list of blocks to get the set Ball1.Heading and set 

Ball1.Speed blocks 



Plug the set Ball1.Speed and set Ball1.Heading into the Fling event handler 

 

 
 

 
 
 
 

Mouse over the "speed" parameter of the when Ball1.Flung event handler. The get and set blocks for 

the speed of the fling will pop up. Grab the get speed block and plug that into the set Ball1.Speed 

block. 

 

Set the Ball's speed to be the same as the Fling gesture's speed 



Set the Ball's heading to be the same as the Fling gesture's heading 

 

Do the same for the Ball's heading. Mouse over the heading parameter and you'll see the get heading 

block appear. Grab that block, and click it into the set Ball1.Heading block. 
 
 

 



Test it out 

 

A good habit while building apps is to test while you build. App Inventor lets you do this easily because 

you can have a live connection between your phone (or emulator) and the App Inventor development 

environment. If you don't have a phone (or emulator) connected, go to the connection instructions and 

then come back to this tutorial. (Connection instructions are in Tutorial #1 or on the website under 

"Getting Started".) 

 

After flinging your ball across the screen, you probably noticed that it got stuck on the side. This is 

because the ball's heading has not changed even though it hit the side of the canvas. To make the ball 

"bounce" of the edge of the screen, we can program in a new event handler called "When Edge 

Reached". 

Why does the Ball get stuck on the side of the screen?! 



Add an Edge Reached Event 

 

Go into the Ball1 drawer and pull out a when Ball1.EdgeReached do event. 
 



Go back into the Ball1 drawer and pull out a Ball.Bounce block. 

 

 

 
 

The Ball.Bounce method needs an edge argument. Notice that the Ball1.EdgeReached event has an 

"edge" as a parameter. We can take the get edge block from that argument and plug it into the call 

Ball1.Bounce method. Grab the get edge block by mousing over (hover your mouse pointer over) the 

"edge" parameter on the when Ball1.EdgeReached block. 

 
 

Add the edge value for the Ball.Bounce block 



Your final blocks should look like this. Now test it out! 

 

 

 
 

 



Test it out! 

 

 

 

Now, when you fling the ball, it should bounce off the edges of the canvas. Great job! 
 

 
 

Test it out! 


