CMPE471 Tutorial Booklet

Theory of Automata

Assoc. Prof. Dr. Muhammed Salamah

CMPE471 - Tutorial 1

Q1. Using the principle of mathematical induction, prove that:
a: $\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$
b: $1+2^{n}<3^{n}$, for all $n \geq 2, n \in N$
Q2. Prove that, if $(1+x)>0$ then, $(1+x)^{n} \geq 1+n x$, for all $n \in N$

Q3. A triomino is an L-shaped figure formed by juxtaposition of three unit squares:

An arrangement if triominoes is a tiling of a shape if it covers the shape exactly without overlaps. In tiling step, all 90 degrees rotations are possible. Prove that any $2^{n} \times 2^{n}$ grid that is missing one square can be tiled with triominoes, regardless of where the missing square is.

Q4. Let \sum be an alphabet. Prove that the relation:
$\mathrm{R}=\{(x, y) \mid x$ is a prefix of $y\}$ is a partial ordering relation of \sum^{*}
Q5. Let $\sum=\{\mathrm{a}, \mathrm{b}\}$, in each of the following three cases, give an example of languages L_{1} and L_{2} that satisfy the stated conditions. (Note that $\mathrm{L}_{1} \subseteq \sum^{*}$, and $\mathrm{L}_{2} \subseteq \sum^{*}$).
I. $\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{L}_{2} \mathrm{~L}_{1}$, such that $\mathrm{L}_{1} \subseteq \mathrm{~L}_{2}, \mathrm{~L}_{2} \not \subset \mathrm{~L}_{1}$, and $\mathrm{L}_{1} \neq\{\varepsilon\}$
II. $\left(\mathrm{L}_{1} \cup \mathrm{~L}_{2}\right)^{*} \neq \mathrm{L}_{1}{ }^{*} \cup \mathrm{~L}_{2}{ }^{*}$
III. $\left(\mathrm{L}_{1} \cup \mathrm{~L}_{2}\right)^{*}=\mathrm{L}_{1}{ }^{*} \cup \mathrm{~L}_{2}{ }^{*}$, such that $\mathrm{L}_{1} \not \subset \mathrm{~L}_{2}$, and $\mathrm{L}_{2} \not \subset \mathrm{~L}_{1}$

Q6. If r is a real number not equal to 1 , prove the following formula:

$$
\sum_{i=0}^{n} r^{i}=\left(1-r^{n+1}\right) /(1-r) \quad \text { for } n \geq 0
$$

Q7. In each case give an example of languages L_{1} and L_{2} that satisfy the stated conditions.
i) $\quad L_{1} L_{2}=L_{2} L_{1}, L_{1} \subseteq L_{2}, L_{2} \not \subset L_{1}, L_{1} \neq\{\lambda\}$.
ii) $L_{1} L_{2}=L_{2} L_{1}, L_{1} \not \subset L_{2}, L_{2} \not \subset L_{1}, L_{1} \neq\{\lambda\}, L_{2} \neq\{\lambda\}$.
iii) $\quad L_{1} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*}, L_{2} \subseteq\{\mathrm{a}, \mathrm{b}\}^{*},\left(L_{1} \cup L_{2}\right)^{*} \neq L_{1}{ }^{*} \cup L_{2}{ }^{*}$.
iv) $L_{1} \subseteq\{\mathbf{a}, \mathbf{b}\}^{*}, L_{2} \subseteq\{\mathbf{a}, \mathbf{b}\}^{*},\left(L_{1} \cup L_{2}\right)^{*}=L_{1}{ }^{*} \cup L_{2}{ }^{*}, L_{1} \not \subset L_{2}, L_{2} \not \subset L_{1}$.

CMPE471 - Tutorial 2

Q1. Let $L_{1}=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)>n_{b}(w)\right\}$ and $L_{2}=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)<n_{b}(w)\right\}$. Let $L=\{a, b\}^{*}-\left(L_{1} \cup L_{2}\right)^{*}$. Describe L and justify your answer.

Q2. Construct CFGs for the following languages:
i) $\quad L=\left\{a^{j} b^{k} a^{n} \mid k=j+n\right\}$
ii) $\quad L=\left\{\left(a^{n} b^{n+2}\right)^{3 i} \mid n \geq 1, i \geq 0\right\}$

Assume that each repeatition of paranthesis is independent from others.
iii) $\quad L=\left\{a^{k} b^{2 k} c^{n} \mid k, n>0\right\}$
iv) $\quad L=\left\{a^{j} b^{k} c^{n} \mid 0 \leq j+k \leq n\right\}$
v) $\quad L=\{a, b\}^{*}-\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Q3. Find the languages generated by the following CFGs:
i) $\quad \mathrm{S} \rightarrow a S b b|a S b| a S \mid \varepsilon$
ii) $\quad \mathrm{S} \rightarrow a S c c \mid a A c c$

$$
A \rightarrow b A c \mid b c
$$

iii) $\quad \mathrm{S} \rightarrow a S b|a S b b| a S b b b \mid \varepsilon$
iv) $\quad \mathrm{S} \rightarrow a S b S|b S a S| \varepsilon$
v) $\quad \mathrm{S} \rightarrow a S|c S| b A \mid \varepsilon$

$$
A \rightarrow a S|c S| \varepsilon
$$

vi) $\quad \mathrm{S} \rightarrow a \operatorname{Sbb} \mid A$
$A \rightarrow c A \mid c$

Q4. Show that the grammar $S \rightarrow \mathrm{aSb}|\mathrm{bSa}| \mathrm{SS} \mid \varepsilon$ is ambiguous.

Q5. Consider the CFG with the following products. Find the derivation tree of $a a b a b b b b b$.
$S \rightarrow A B \mid \varepsilon$

$$
\begin{aligned}
& A \rightarrow a B \\
& B \rightarrow S b
\end{aligned}
$$

CMPE471 - Tutorial 3

Q1. Consider the regular grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$ where P consists of the following productions:

$$
\begin{aligned}
G: S & \rightarrow b S|a A| \varepsilon \\
A & \rightarrow b A \mid a S
\end{aligned}
$$

a) Describe the language generated by this grammar.
b) Give a minimal regular expression for $L(G)$.
c) Find an equivalent grammar to G.

Q2. Give minimal regular expressions for the following languages:
a) The set of all strings over $\{a, b, c\}$ that starts and end with the same symbol.
b) The set of all strings over $\{a, b\}$ in which every pair of adjacent a's appears before any pair of adjacent b's.
c) The set of all strings over $\{0,1\}$ except for the two strings 11 and 111 .
d) The set of all strings over $\{0,1\}$ that have an even number of 0 's or exactly three 1 's.
e) The set of all strings over $\{a, b, c\}$ such that every a is followed by at least two c's.

Q3. Determine whether each of the following statements is true (T) or false (F). In case of being false write a short comment, or give a counter example.

	Statement	T/F	Comment / Counter Example
1)	$\mathrm{a}^{*}\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*}=(\mathrm{a}+\mathrm{b})^{*}$		
2)	$\mathrm{L}\left[\mathrm{a}^{*} \mathrm{~b}^{*}\right] \cap \mathrm{L}\left[c^{*} \mathrm{~d}^{*}\right]=\{ \}$		
3)	If L_{1} and L_{2} are not regular then $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is also not regular.		
4)	If L_{1} is regular and $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is also regular, then L_{2} must be regular.		
5)	The set of even integers is closed under division.		

CMPE471 - Tutorial 4

Q1. Consider the set of strings over the alphabet $\{0,1\}$ obeying the following conditions:
a) The number of 1 's in a string is even and at least two.
b) There are no more than two 1's successively.
c) 01 is always followed by 1 .
d) The strings always start with 0 .

Find a regular expression that denotes the language described by the above set of strings.

Q2. Find a DFA that accepts the language denoted by $0^{*} 1^{*}$.

Q3. Describe using set notation the language denoted by aa($a+b \varphi)^{*}$.

Q4. Find a Deterministic Finite Automaton that accepts the language generated by the following grammar.
$S \rightarrow 0 S \mid 0 A$
$\mathrm{A} \rightarrow 0 \mathrm{~B}|0 \mathrm{C}| 1 \mathrm{~S}|1 \mathrm{~A}| 0$
$B \rightarrow 0 C$
$\mathrm{C} \rightarrow 0 \mathrm{~B}|1 \mathrm{C}| 0$

Q5. Give the language generated by the following grammar as a regular expression.
$S \rightarrow 0 \mathrm{~A}|1 \mathrm{C}| 0$
$A \rightarrow 1 B$
$\mathrm{B} \rightarrow 0 \mathrm{~A}|1 \mathrm{~B}| 0$
$\mathrm{C} \rightarrow 0 \mathrm{D} \mid 1 \mathrm{E} \| 1$
$\mathrm{D} \rightarrow 0 \mathrm{E} \mid 0$
$\mathrm{E} \rightarrow 1 \mathrm{D}$

Q6. We are given the following non-deterministic finite automation M. Find a deterministic automation D that accepts the same language as M.

Q7. Find a regular expression that denotes the same languages accepted by the finite automaton below.

CMPE471 - Tutorial 5

Q1. For each of the following languages, construct a finite automaton that accepts the language:
a) $\mathrm{L}\left[\mathrm{a}^{*}\left(\mathrm{~b}^{+} \mathrm{a}^{+}\right)^{*} \mathrm{~b}^{*}\right]$
b) $\mathrm{L}\left[\mathrm{b}(\mathrm{ab})^{*} \mathrm{bb}\right]$
c) $\mathrm{L}=\left\{\mathrm{w} \in\{0,1\}^{*} \mid \mathrm{w}\right.$ contains odd number of 1 's $\}$
d) $\mathrm{L}\left[(\mathrm{ba}+\mathrm{bb})^{*}+(\mathrm{ab}+\mathrm{aa})^{*}\right]$
e) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid\right.$ aa is a substring of w but aab is not $\}$
f) $L=\left\{w \in\{a, b, c\}^{*} \mid\right.$ the number of a 's in w is multiple of three $\}$

Q2. Consider the following DFA, M:

a) Give a minimum regular expression for this $\mathrm{L}(\mathrm{M})$.
b) Give a regular grammar for $L(M)$.

CMPE471 - Tutorial 6

Q1. Minimize the following DFA:

Q2. Minimize the following DFA.

Q3. Write the equivalent Regular Expression for the following DFA. What would be the equivalent Regular Expression if state B was a final state.

Q4. Write the equivalent Regular Expression for the following DFA. What would be the equivalent Regular Expression if state B was a final state.

Q5 (Homework). Minimize the following DFA.

CMPE471 - Tutorial 7

Q1. Consider the following CLF over the alphabet $\{\mathrm{a}, \mathrm{b}\}$:
$L=\left\{a^{i} b^{j} a^{k} \mid j=i+k ; i>0\right\}$
a) Give a context-free grammar CFG that generates L .
b) Construct a PDA M for L.
c) Show that M accepts the string "aabbba" by starting with the configuration (s, aabbba, \#) where " s " is the start state of M .

Q2. Convert the following CFG into a minimal Chomsky Normal Form (CNF).
$S \rightarrow a A b B|A B C| a$
$A \rightarrow a A \mid a$
$B \rightarrow b B c \mathrm{C} \mid b$
$C \rightarrow a b c$

Q3. For part (a), find the language that is accepted by the given PDA in the table below. Fort (b) and part (c), construct a minimal PDA for each of the given languages. (Use intuition. Do not use the theorem of CFG \rightarrow PDA given in the class).
a) $L_{1}=\left\{a b^{n} a c^{2 n} \mid n>0\right\}$, over the alphabet $\sum=\{a, b, c\}$.
b) $L 2=\left\{a^{m} b^{n} c^{3 m+n} \mid m, n>0\right\}$, over the alphabet $\sum=\{a, b, c\}$.
c) $L 3=\left\{w \mid w \in \sum^{*}, n_{a}(w)+n_{b}(w)=n_{c}(w)\right\}$, over the alphabet $\sum=\{a, b, c\}$.

Q4. Show that the language $L=\left\{0^{m} 1^{n} 0^{m+n} \mid m, n>0\right\}$ is not regular.

Q5. Let G be the CFG given by the below rules. Using intuition, construct an equivalent grammar in GNF (Greibach Normal Form).

$$
\begin{aligned}
& S \rightarrow S a A \mid A \\
& A \rightarrow A b B \mid B \\
& B \rightarrow c B \mid c
\end{aligned}
$$

Q6. Convert the following Mealy DFA to its Moore equivalent:

Q7. Convert the following Moore DFA to its Mealy equivalent:

