
Lecture 2

 Introduction to MIPS assembler, adds/loads/stores

Review: Execute Cycle

 Processor

Control

Datapath

Memory

contents Reg #4 ADD contents Reg #2

results put in Reg #2

The datapath executes the instructions
as directed by control

000000 00100 00010 0001000000100000

Memory stores both instructions and
data

Devices

Input

Output

Network

Review: Processor Organization

Control needs to have circuitry to
 Decide which is the next instruction

and input it from memory

 Decode the instruction

 Issue signals that control the way
information flows between datapath components

 Control what operations the datapath’s functional units
perform

 Execute instructions - functional units (e.g., adder) and
storage locations (e.g., register file)

 Interconnect the functional units so that the instructions can
be executed as required

 Load data from and store data to memory

Datapath needs to have circuitry to

Fetch

Decode Exec

Assembly Language Instructions

 The language of the machine

 Want an ISA that makes it easy to build the

hardware and the compiler while maximizing

performance and minimizing cost

 Stored program concept

 Instructions are stored in memory (as the data)

 Our target: the MIPS ISA
 similar to other ISAs developed since the 1980's

 used by Broadcom, Cisco, NEC, Nintendo, Sony, …

Design goals: maximize performance, minimize cost,

reduce design time (time-to-market), minimize memory

space (embedded systems), minimize power

consumption (mobile systems)

RISC - Reduced Instruction Set Computer

RISC philosophy

 fixed instruction lengths

 load-store instruction sets

 limited number of addressing modes

 limited number of operations

MIPS, Sun SPARC, HP PA-RISC, IBM
PowerPC …

 Instruction sets are measured by how well
compilers use them as opposed to how well
assembly language programmers use them

CISC (C for complex), e.g., Intel x86

Design Principles

1. Simplicity favors regularity.

2. Smaller is faster.

3. Make the common case fast.

MIPS Arithmetic Instruction

MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation

Each arithmetic instruction specifies exactly
three operands

destination  source1 op source2

 Operand order is fixed (the destination is specified
first)

The operands are contained in the datapath’s
register file ($t0, $s1, $s2)

Compiling More Complex Statements

Assuming variable b is stored in register $s1, c
is stored in $s2, and d is stored in $s3 and the
result is to be left in $s0, what is the

assembler equivalent to the C statement

h = (b - c) + d

sub $t0, $s1, $s2

add $s0, $t0, $s3

MIPS Register File

Operands of arithmetic instructions must be from a
limited number of special locations contained in the
datapath’s register file

 Thirty-two 32-bit registers

- Two read ports

- One write port

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

32 5

32

5

5

32
Registers are

 Fast

- Smaller is faster & Make the common case fast

 Easy for a compiler to use

 Improves code density

- Since register are named with fewer bits than a memory location

Register addresses are indicated by using $

25 =

0 $zero constant 0 (Hdware)

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

. . . (callee can clobber)

15 $t7

Naming Conventions for Registers

16 $s0 callee saves

. . . (caller can clobber)

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp pointer to global area

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address (Hdware)

Registers vs. Memory

 Arithmetic instructions operands must be in
registers

 only thirty-two registers are provided

 Compiler associates variables with registers

 Processor

Control

Datapath

Memory

Devices

Input

Output

Network

What about programs with lots of variables?

Memory is a large, single-dimensional array

An address acts as the index into the memory
array

Processor – Memory Interconnections

Processor

Memory

32 bits

?

locations

read addr/

write addr

read data

write data

32

32

32 232 Bytes

(4 GB)

 230 Words

(1 GW)

= 4 Bytes = 1 Word

1
101
10

0
4
8

The data stored in

the memory

The word

address of the

data

MIPS has two basic data transfer instructions for
accessing memory (assume $s3 holds 2410)

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

The data transfer instruction must specify

 where in memory to read from (load) or write to (store)
– memory address

 where in the register file to write to (load) or read from
(store) – register destination (source)

The memory address is formed by summing the
constant portion of the instruction and the
contents of the second register

Accessing Memory

28

32

MIPS Memory Addressing

The memory address is formed by summing the
constant portion of the instruction and the
contents of the second (base) register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0

32 bit Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0 $s3 holds 8

in location 16

. . . 0001

. . . 0001

Compiling with Loads and Stores

Assuming variable b is stored in $s2 and that
the base address of array A is in $s3, what is

the MIPS assembly code for the C statement

A[8] = A[2] - b

$s3

$s3+4

$s3+8

$s3+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]
lw $t0, 8($s3)

sub $t0, $t0, $s2

sw $t0, 32($s3)

Compiling with a Variable Array Index

Assuming that the base address of
array A is in register $s4, and
variables b, c, and i are in $s1,
$s2, and $s3, respectively, what is

the MIPS assembly code for the C
statement

c = A[i] - b

add $t1, $s3, $s3 #array index i is in $s3

add $t1, $t1, $t1 #temp reg $t1 holds 4*i

$s4

$s4+4

$s4+8

$s4+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]

add $t1, $t1, $s4 #addr of A[i] now in $t1

lw $t0, 0($t1)

sub $s2, $t0, $s1

 Small constants are used quite frequently
(50% of operands in many common
programs)
e.g., A = A + 5;

 B = B + 1;

 C = C - 18;

Dealing with Constants

 Include constants inside arithmetic instructions

 Much faster than if they have to be loaded from
memory (they come in from memory with the
instruction itself)

 MIPS immediate instructions

 addi $s3, $s3, 4 #$s3 = $s3 + 4

Constant (or Immediate) Operands

There is no subi instruction, can you guess why
not?

MIPS Instructions, so far

Category Instr Example Meaning

Arithmetic

add add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3

add
immediate

addi $s1, $s2, 4 $s1 = $s2 + 4

Data

transfer

load word lw $s1, 32($s2) $s1 = Memory($s2+32)

store word sw $s1, 32($s2) Memory($s2+32) = $s1

Review: MIPS Organization

Processor
Memory

32 bits

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

ALU
32

32

32 0 1 2 3

7 6 5 4

Arithmetic instructions – to/from the register file

Load/store instructions - to/from memory

 Instructions, like registers and words of data,
are also 32 bits long

 Example: add $t0, $s1, $s2

registers have numbers $t0=$8,$s1=$17,$s2=$18

 Instruction Format:

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

Can you guess what the field names stand for?

MIPS Instruction Fields

op

 rs

 rt

 rd

shamt

 funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

address of the second register source operand

the register destination address

shift amount (for shift instructions)

function code that selects the specific variant of
the operation specified in the opcode field

 Consider the load-word and store-word instr’s

 Introduce a new type of instruction format

 I-type for data transfer instructions (previous format
was R-type for register)

 Example: lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit number

23hex 18 8 24

100011 10010 01000 0000000000011000

Memory Address Location

Example: lw $t0, 24($s2)
Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

0x00000002

2410 + $s2 =

Note that the offset

can be positive or

negative

 . . . 1001 0100

+ . . . 0001 1000

 . . . 1010 1100 =

 0x120040ac

0x120040ac

$t0

 Example: sw $t0, 24($s2)

 A 16-bit offset means access is limited to
memory locations within a range of +213-1 to
-213 (~8,192) words (+215-1 to -215 (~32,768)
bytes) of the address in the base register $s2

 2’s complement (1 sign bit + 15 magnitude bits)

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

 What instruction format is used for the addi ?
 addi $s3, $s3, 4 #$s3 = $s3 + 4

 Machine format:

Machine Language – Immediate Instructions

op rs rt 16 bit immediate I format

8 19 19 4

 The constant is kept inside the instruction itself!

 So must use the I format – Immediate format

 Limits immediate values to the range +215–1 to -215

Instruction Format Encoding

Can reduce the complexity with multiple formats
by keeping them as similar as possible

 First three fields are the same in R-type and I-type

Each format has a distinct set of values in the
op field

Instr Frmt op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten NA

sub R 0 reg reg reg 0 34ten NA

addi I 8ten reg reg NA NA NA constant

lw I 35ten reg reg NA NA NA address

sw I 43ten reg reg NA NA NA address

Assembling Code

Remember the assembler code we compiled

last lecture for the C statement

A[8] = A[2] - b

lw $t0, 8($s3) #load A[2] into $t0

sub $t0, $t0, $s2 #subtract b from A[2]

sw $t0, 32($s3) #store result in A[8]

Assemble the MIPS object code for these three

instructions (decimal is fine)

35 lw 19 8 8

43 sw 19 8 32

0 sub 8 18 8 0 34

Review: MIPS Instructions, so far

Category Instr Op
Code

Example Meaning

Arithmetic

(R format)

add 0 &
32

add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 &
34

sub $s1, $s2, $s3 $s1 = $s2 - $s3

Arithmetic

(I format)

add
immediate

8 addi $s1, $s2, 4 $s1 = $s2 + 4

Data

transfer

(I format)

load word 35 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 43 sw $s1, 100($s2) Memory($s2+100) = $s1

Two Key Principles of Machine Design

1. Instructions are represented as numbers

2. Programs are stored in memory to be read or
written, just like numbers

Stored-program concept

 Programs can be shipped as
files of binary numbers –
binary compatibility

 Computers can inherit ready-
made software provided they
are compatible with an
existing ISA – leads industry
to align around a small
number of ISAs

Accounting prg

(machine code)

C compiler

(machine code)

Payroll

data

Source code in

C for Acct prg

Memory

Review: MIPS R3000 ISA

 Instruction Categories
 Load/Store

 Computational

 Jump and Branch

 Floating Point
- coprocessor

 Memory Management

 Special

 3 Instruction Formats: all 32 bits wide

R0 - R31

PC

HI

LO

OP rs rt rd shamt funct

OP rs rt 16 bit number

OP 26 bit jump target

Registers

R format

I format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

