

Lecture 3

Review: Signed Binary Representation

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

23 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

complement all the bits

0101

and add a 1

0110

 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

Review: MIPS Number Representations

maxint

minint

 Converting <32 bit values into 32 bit values

 copy the most significant bit (the sign bit) into the
“empty” bits
 0010 -> 0000 0010

 1010 -> 1111 1010

 sign extend versus zero extend

MSB

LSB

Review: MIPS Organization

Processor
Memory

32 bits

230

words

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

ALU
32

32

32 0 1 2 3

7 6 5 4

byte address

(big Endian)

Arithmetic instructions – to/from the register file

Load/store instructions – from/to memory

Fetch

Decode Exec

Review: MIPS Instructions, so far

Category Instr OpCode Example Meaning

Arithmetic

(R format)

add 0 & 20 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 & 22 sub $s1, $s2, $s3 $s1 = $s2 - $s3

Arithmetic

(I format)

add

immediate

8 addi $s1, $s2, 4 $s1 = $s2 + 4

Data

transfer

(I format)

load word 23 lw $s1, 100($s2) $s1 =

Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) =

$s1

hex

 Decision making instructions
 alter the control flow

 i.e., change the "next" instruction to be executed

 MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0$s1

beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Example: if (i==j) h = i + j;

 bne $s0, $s1, Lbl1

 add $s3, $s0, $s1

Lbl1: ...

Instructions for Making Decisions

 Instructions:
 bne $s0, $s1, Lbl #go to Lbl if $s0$s1

 beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Machine Formats:

 How is the branch destination address specified?

Assembling Branches

op rs rt 16 bit number I format

5 16 17 ????

4 16 17 ????

Specifying Branch Destinations

Could use a “base” register

and add to it the 16-bit offset

 which register?

- Instruction Address Register

(PC = program counter) - its use is

automatically implied by branch

- PC gets updated (PC+4) during the

Fetch cycle so that it holds the

address of the next instruction

 limits the branch distance to

-215 to +215-1 instr’s from the

(instruction after the) branch

- but most branches are local anyway

bne $s0,$s1,Lbl1

add $s3,$s0,$s1

... Lbl1:

Could specify the memory address - but that
would require a 32 bit field

PC

Disassembling Branch Destinations

The contents of the updated PC (PC+4) is added
to the 16 bit branch offset which is converted into
a 32 bit value by
 concatenating two low-order zeros to make it a word

address and then sign-extending those 18 bits

The result is written into the PC if the branch
condition is true - before the next Fetch cycle

PC
Add

32

32 32

32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst

address

?
Add

4 32

Fetch

PC = PC+4

Decode Exec

 Assembly code
 bne $s0, $s1, Lbl1

 add $s3, $s0, $s1

Lbl1: ...

 Machine Format of bne:

Assembling Branches Example

op rs rt 16 bit offset I format

5 16 17

 Remember

 After the bne instruction is fetched, the PC is updated so
that it is addressing the add instruction (PC = PC + 4).

 The offset (plus 2 low-order zeros) is sign-extended and
added to the (updated) PC

0x0001

 MIPS also has an unconditional branch
instruction or jump instruction:

 j Lbl #go to Lbl

 Example: if (i!=j)
 h=i+j;
 else
 h=i-j;

 beq $s0, $s1, Else
 add $s3, $s0, $s1
 j Exit
Else: sub $s3, $s0, $s1
Exit: ...

Another Instruction for Changing Flow

 Instruction:
 j Lbl #go to Lbl

 Machine Format:

Assembling Jumps

op 26-bit address J format

2 ????

 How is the jump destination address specified?

 As an absolute address formed by

- concatenating 00 as the 2 low-order bits to make it a word

address

- concatenating the upper 4 bits of the current PC (now PC+4)

Disassembling Jump Destinations

The low order 26 bits of the jump instr converted
into a 32 bit jump destination address by
 concatenating two low-order zeros to create an 28 bit

(word) address and then concatenating the upper 4 bits
of the current PC (now PC+4) to create a 32 bit (word)
address

 that is put into the PC prior to the next Fetch cycle

PC
4 32

26

32

00

from the low order 26 bits of the jump instruction Fetch

PC = PC+4

Decode Exec

 Assemble the MIPS machine code (in decimal is
fine) for the following code sequence. Assume
that the addr of the beq instr is 0x00400020hex

 beq $s0, $s1, Else
 add $s3, $s0, $s1
 j Exit
Else: sub $s3, $s0, $s1
Exit: ...

Assembling Branches and Jumps

 0x00400020 4 16 17 2

 0x00400024 0 16 17 19 0 0x20

 0x00400028 2 0000 0100 0 ... 0 0011 002

 0x0040002c 0 16 17 19 0 0x22

 0x00400030 ...

 jmp dst = (0x0) 0x040003 002(002)

 = 0x00400030

Branching Far Away

What if the branch destination is further away
than can be captured in 16 bits?

The assembler comes to the rescue – it inserts
an unconditional jump to the branch target and
inverts the condition

 beq $s0, $s1, L1

 becomes

 bne $s0, $s1, L2

 j L1

 L2:

Compiling While Loops

Compile the assembly code for the C while

loop where i is in $s0, j is in $s1, and k is in

$s2

 while (i!=k)

 i=i+j;

 Loop: beq $s0, $s2, Exit

 add $s0, $s0, $s1

 j Loop

Exit: . . .

Basic block – A sequence of instructions

without branches (except at the end) and
without branch targets (except at the beginning)

 We have beq, bne, but what about branch-if-

less-than?

 New instruction:

 slt $t0, $s0, $s1 # if $s0 < $s1

 # then

 # $t0 = 1

 # else

 # $t0 = 0

 Machine format:

2

More Instructions for Making Decisions

op rs rt rd funct

 0 16 17 8 0 42 = 0x2a

R format

 Since constant operands are popular in
comparisons, also have slti

 New instruction:

 slti $t0, $s0, 10 # if $s0 < 10

 # then

 # $t0 = 1

 # else

 # $t0 = 0

 Machine format:

2

Yet More Instructions for Making Decisions

op rs rt 16 bit number

 a 16 8 0x000a

I format

Other Branch Instructions

Can use slt, beq, bne, and the fixed value of

0 in $zero to create all relative conditions

 less than blt $s1, $s2, Lbl

 less than or equal to ble $s1, $s2, Lbl

 greater than bgt $s1, $s2, Lbl

 great than or equal to bge $s1, $s2, Lbl

As pseudo instructions they are recognized (and

expanded) by the assembler

The assembler needs a reserved register ($at)

 so there are policy of use conventions for registers

slt $at, $s1, $s2 #$at set to 1 if

bne $at, $zero, Lbl # $s1 < $s2

 Most higher level languages have case or

switch statements allowing the code to select

one of many alternatives depending on a single

value

 Instruction:

 jr $t1 #go to address in $t1

 Machine format:

Another Instruction for Changing Flow

op rs funct

 0 9 0 0 0 8 = 0x08

R format

Review: MIPS Instructions, so far

Category Instr OpCd Example Meaning

Arithmetic

(R & I

format)

add 0 & 20 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 & 22 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 4 $s1 = $s2 + 4

Data

transfer

(I format)

load word 23 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) = $s1

Cond.

branch

(I format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less

than immediate

a slt $s1, $s2, 100 if ($s2<100) $s1=1;

else $s1=0

(R format) set on less

than

0 & 2a slti $s1, $s2, $s3 if ($s2<$s3) $s1=1;

else $s1=0

Uncond.

jump

jump 2 j 2500 go to 10000

jump register 0 & 08 jr $t1 go to $t1

MIPS Organization

Processor
Memory

32 bits

230

words

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7 6 5 4

byte address

(big Endian)

Fetch

PC = PC+4

Decode Exec

Add
32

32
4

Add
32

32
br offset

MIPS Data Types

Bit: 0, 1

Bit String: sequence of bits of a particular length

 4 bits is a nibble

 8 bits is a byte

 16 bits is a half-word

 32 bits is a word

 64 bits is a double-word

Character:

 ASCII 7 bit code

Decimal:
 digits 0-9 encoded as 00002 thru 10012

 two decimal digits packed per 8 bit byte

Integers: 2's complement

Floating Point

Beyond Numbers
 Most computers use 8-bit bytes to represent characters

with the American Std Code for Info Interchange (ASCII)

So, we need instructions to move bytes around

ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char

0 Null 32 space 48 0 64 @ 96 ` 112 p

1 33 ! 49 1 65 A 97 a 113 q

2 34 “ 50 2 66 B 98 b 114 r

3 35 # 51 3 67 C 99 c 115 s

4 EOT 36 $ 52 4 68 D 100 d 116 t

5 37 % 53 5 69 E 101 e 117 u

6 ACK 38 & 54 6 70 F 102 f 118 v

7 39 ‘ 55 7 71 G 103 g 119 w

8 bksp 40 (56 8 72 H 104 h 120 x

9 tab 41) 57 9 73 I 105 i 121 y

10 LF 42 * 58 : 74 J 106 j 122 z

11 43 + 59 ; 75 K 107 k 123 {

12 FF 44 , 60 < 76 L 108 l 124 |

15 47 / 63 ? 79 O 111 o 127 DEL

Byte Addresses

Since bytes (8 bits) are so useful, most ISAs

support addressing individual bytes in memory

Therefore, the memory address of a word must

be a multiple of 4 (alignment restriction)

Big Endian: leftmost byte is word address
MIPS

Little Endian: rightmost byte is word address
Intel 80x86

Addressing Objects: Endianess and Alignment

Big Endian: leftmost byte is word address

Little Endian: rightmost byte is word address

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Alignment restriction: requires
that objects fall on address that
is multiple of their size

0 1 2 3

Aligned

Not

Aligned

0 1 2 3

Loading and Storing Bytes

MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

op rs rt 16 bit number

What 8 bits get loaded and stored?

 load byte places the byte from memory in the

rightmost 8 bits of the destination register

- what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a

register and writes it to the byte in memory

- leaving the other bytes in the memory word unchanged

Example of Loading and Storing Bytes

Given following code sequence and memory state

what is the state of the memory after executing

the code?
 add $s3, $zero, $zero

 lb $t0, 1($s3)

 sb $t0, 6($s3)

Memory

0x 0 0 9 0 1 2 A 0

Data Word
Address (Decimal)

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 0x 0 0 0 0 0 0 0 0
$t0 = 0x00000090

mem(4) = 0xFFFF90FF

mem(4) = 0xFF12FFFF

 What value is left in $t0?

 What if the machine was little
Endian?

 What word is changed in Memory
and to what?

$t0 = 0x00000012

Loading and Storing Half Words

MIPS also provides special instructions to move

half words

lh $t0, 1($s3) #load half word from memory

sh $t0, 6($s3) #store half word to memory

op rs rt 16 bit number

What 16 bits get loaded and stored?

 load half word places the half word from memory in the

rightmost 16 bits of the destination register

- what happens to the other bits in the register?

 store half word takes the half word from the rightmost

16 bits of the register and writes it to the half word in

memory

- leaving the other half word in the memory word unchanged

Shift Operations

Need operations to pack and unpack 8-bit

characters into 32-bit words

Shifts move all the bits in a word left or right

 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

Such shifts are called logical because they fill

with zeros

 Notice that a 5-bit shamt field is enough to shift a

32-bit value 25 – 1 or 31 bit positions

 0 16 10 8 0x00

R format

More Shift Operations

An arithmetic shift (sra) maintain the arithmetic
correctness of the shifted value (i.e., a number
shifted right one bit should be ½ of its original
value; a number shifted left should be 2 times
its original value)
 sra uses the most significant bit (sign bit) as the bit

shifted in

 sll works for arithmetic left shifts for 2’s compl. (so
there is no need for a sla)

 sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

 0 16 10 8 0x03

R format

Give a specific numerical example (e.g., 6 and

-6) illustrating the difference between sll, srl,

and sra (and how 6 becomes 3, etc.)

Compiling Another While Loop

Compile the assembly code for the C while

loop where i is in $s3, k is in $s5, and the base

address of the array save is in $s6

 while (save[i] == k)

 i += 1;

 Loop: sll $t1, $s3, 2

 add $t1, $t1, $s6

 lw $t0, 0($t1)

 bne $t0, $s5, Exit

 addi $s3, $s3, 1

 j Loop

Exit: . . .

Logical Operations

There are a number of bit-wise logical operations

in the MIPS ISA

 and $t0, $t1, $t2 #$t0 = $t1 & $t2

 or $t0, $t1, $t2 #$t0 = $t1 | $t2

 nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

 andi $t0, $t1, 0xff00 #$t0 = $t1 & ff00

 ori $t0, $t1, 0xff00 #$t0 = $t1 | ff00

op rs rt rd shamt funct

 0 9 10 8 0x24

R format

Logic Operations

Logic operations operate on individual bits of the

operand.
 $t2 = 0…0 0000 1101 0000

 $t1 = 0…0 0011 1100 0000

and $t0, $t1, $t2 $t0 =

or $t0, $t1 $t2 $t0 =

nor $t0, $t1, $t2 $t0 =

0…0 0000 1100 0000

0…0 0011 1101 0000

1…1 1100 0010 1111

 We'd also like to be able to load a 32-bit

constant into a register

 Must use two instructions, new "load upper

immediate" instruction
 lui $t0, 0xaaaa

 Then must get the lower order bits right, i.e.,
 ori $t0, $t0, 0xaaaa

How About Larger Constants?

 f 0 8 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

Review: MIPS Instructions, so far

Category Instr OpC Example Meaning

Arithmetic

(R & I

format)

add 0 & 20 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 & 22 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 4 $s1 = $s2 + 4

shift left logical 0 & 00 sll $s1, $s2, 4 $s1 = $s2 << 4

shift right

logical

0 & 02 srl $s1, $s2, 4 $s1 = $s2 >> 4 (fill with

zeros)

shift right

arithmetic

0 & 03 sra $s1, $s2, 4 $s1 = $s2 >> 4 (fill with

sign bit)

and 0 & 24 and $s1, $s2, $s3 $s1 = $s2 & $s3

or 0 & 25 or $s1, $s2, $s3 $s1 = $s2 | $s3

nor 0 & 27 nor $s1, $s2, $s3 $s1 = not ($s2 | $s3)

and immediate c and $s1, $s2, ff00 $s1 = $s2 & 0xff00

or immediate d or $s1, $s2, ff00 $s1 = $s2 | 0xff00

load upper

immediate

f lui $s1, 0xffff $s1 = 0xffff0000

Review: MIPS Instructions, so far

Category Instr OpC Example Meaning

Data

transfer

(I format)

load word 23 lw $s1, 100($s2) $s1 = Memory($s2+100)

store word 2b sw $s1, 100($s2) Memory($s2+100) = $s1

load byte 20 lb $s1, 101($s2) $s1 = Memory($s2+101)

store byte 28 sb $s1, 101($s2) Memory($s2+101) = $s1

load half 21 lh $s1, 101($s2) $s1 = Memory($s2+102)

store half 29 sh $s1, 101($s2) Memory($s2+102) = $s1

Cond.

branch

(I & R

format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less

than immediate

a slti $s1, $s2, 100 if ($s2<100) $s1=1;

else $s1=0

set on less

than

0 & 2a slt $s1, $s2, $s3 if ($s2<$s3) $s1=1;

else $s1=0

Uncond.

jump

jump 2 j 2500 go to 10000

jump register 0 & 08 jr $t1 go to $t1

