
Lecture 5B

Machine Number Representation

 Bits are just bits (have no inherent meaning)
 conventions define the relationships between bits and

numbers

 Binary numbers (base 2) - integers
0000 0001 0010 0011 0100 0101 . . .

 in decimal from 0 to 2n-1 for n bits

Of course, it gets more complicated
 storage locations (e.g., register file words) are finite, so

have to worry about overflow (i.e., when the number is
too big to fit into 32 bits)

 have to be able to represent negative numbers, e.g., how
do we specify -8 in

 addi $sp, $sp, -8 #$sp = $sp - 8

 in real systems have to provide for more that just
integers, e.g., fractions and real numbers (and floating
point) and alphanumeric (characters)

Possible Representations

Sign Mag. Two’s Comp. One’s Comp.

1000 = -8

1111 = -7 1001= -7 1000 = -7

1110 = -6 1010 = -6 1001 = -6

1101 = -5 1011 = -5 1010 = -5

1100 = -4 1100 = -4 1011 = -4

1011 = -3 1101 = -3 1100 = -3

1010 = -2 1110 = -2 1101 = -2

1001 = -1 1111 = -1 1110 = -1

1000 = -0 1111 = -0

0000 = +0 0000 = 0 0000 = +0

0001 = +1 0001 = +1 0001 = +1

0010 = +2 0010 = +2 0010 = +2

0011 = +3 0011 = +3 0011 = +3

0100 = +4 0100 = +4 0100 = +4

0101 = +5 0101 = +5 0101 = +5

0110 = +6 0110 = +6 0110 = +6

0111 = +7 0111 = +7 0111 = +7

 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

 What if the bit string represented addresses?
 need operations that also deal with only positive (unsigned)

integers

maxint

minint

MIPS Representations

 Negating a two's complement number –
complement all the bits and then add a 1
 remember: “negate” and “invert” are quite different!

 Converting n-bit numbers into numbers with more
than n bits:
 MIPS 16-bit immediate gets converted to 32 bits for

arithmetic

 sign extend - copy the most significant bit (the sign bit)
into the other bits
 0010 -> 0000 0010

 1010 -> 1111 1010

 sign extension versus zero extend (lb vs. lbu)

Two's Complement Operations

Design the MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic
operations of the ISA

add, addi, addiu, addu

sub, subu

mult, multu, div, divu

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

With special handling for

 sign extend – addi, addiu, slti, sltiu

 zero extend – andi, ori, xori

 overflow detection – add, addi, sub

MIPS Arithmetic and Logic Instructions

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

 000000 101000

 000000 101001

SLT 000000 101010

SLTU 000000 101011

 000000 101100

Design Trick: Divide & Conquer

 Break the problem into simpler problems, solve
them and glue together the solution

 Example: assume the immediates have been
taken care of before the ALU

 now down to 10 operations

 can encode in 4 bits

 0 add

 1 addu

 2 sub

 3 subu

 4 and

 5 or

 6 xor

 7 nor

 a slt

 b sltu

 Just like in grade school (carry/borrow 1s)

 0111 0111 0110

 + 0110 - 0110 - 0101

 Two's complement operations are easy

 do subtraction by negating and then adding

 0111 0111

- 0110 + 1010

 Overflow (result too large for finite computer word)

 e.g., adding two n-bit numbers does not yield an n-bit number

 0111

 + 0001

Addition & Subtraction

1101 0001 0001

 0001 1 0001

 1000

Building a 1-bit Binary Adder

1 bit

Full

Adder

A

B

S

carry_in

carry_out

 S = A xor B xor carry_in

 carry_out = A&B | A&carry_in | B&carry_in

 How can we use it to build a 32-bit adder?

 How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Building 32-bit Adder

1-bit

FA

A0

B0

S0

c0=carry_in

c1

1-bit

FA

A1

B1

S1

c2

1-bit

FA

A2

B2

S2

c3

c32=carry_out

1-bit

FA

A31

B31

S31

c31

.
.
.

 Just connect the carry-out of
the least significant bit FA to the
carry-in of the next least
significant bit and connect . . .

 Ripple Carry Adder (RCA)

 advantage: simple logic, so small
(low cost)

 disadvantage: slow and lots of
glitching (so lots of energy
consumption)

A 32-bit Ripple Carry Adder/Subtractor

 Remember 2’s
complement is just

 complement all the bits

 add a 1 in the least
significant bit

A 0111 0111

B - 0110 +

1-bit

FA S0

c0=carry_in

c1

1-bit

FA S1

c2

1-bit

FA S2

c3

c32=carry_out

1-bit

FA S31

c31

.
.
.

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control

(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001

1001

 1

1 0001

Overflow Detection and Effects

Overflow: the result is too large to represent in the
number of bits allocated

When adding operands with different signs, overflow
cannot occur! Overflow occurs when

 adding two positives yields a negative

 or, adding two negatives gives a positive

 or, subtract a negative from a positive gives a negative

 or, subtract a positive from a negative gives a positive

New MIPS Instructions

Category Instr Op Code Example Meaning

Arithmetic

(R & I
format)

add unsigned 0 and 21 addu $s1, $s2, $s3 $s1 = $s2 + $s3

sub unsigned 0 and 23 subu $s1, $s2, $s3 $s1 = $s2 - $s3

add
imm.unsigned

9 addiu $s1, $s2, 6 $s1 = $s2 + 6

Data
Transfer

ld byte
unsigned

24 lbu $s1, 25($s2) $s1 = Mem($s2+25)

ld half unsigned 25 lhu $s1, 25($s2) $s1 = Mem($s2+25)

Cond.
Branch
(I & R
format)

set on less than
unsigned

0 and 2b sltu $s1, $s2, $s3 if ($s2<$s3) $s1=1
else
 $s1=0

set on less than
imm unsigned

b sltiu $s1, $s2, 6 if ($s2<6) $s1=1

else
 $s1=0

 Sign extend – addiu, addiu, slti, sltiu

 Zero extend – andi, ori, xori

 Overflow detected – add, addi, sub

Review: MIPS Arithmetic Instructions

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADD 00 100000

ADDU 00 100001

SUB 00 100010

SUBU 00 100011

AND 00 100100

OR 00 100101

XOR 00 100110

NOR 00 100111

Type op funct

 00 101000

 00 101001

SLT 00 101010

SLTU 00 101011

 00 101100

 0 add

 1 addu

 2 sub

 3 subu

 4 and

 5 or

 6 xor

 7 nor

 a slt

 b sltu

 expand immediates to 32 bits before ALU

10 operations so can encode in 4 bits

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

Review: A 32-bit Adder/Subtractor

1-bit

FA S0

c0=carry_in

c1

1-bit

FA S1

c2

1-bit

FA S2

c3

c32=carry_out

1-bit

FA S31

c31

.
.
.

 Built out of 32 full
adders (FAs) A0

B0

A1

B1

A2

B2

A31

B31

add/subt

1 bit

FA

A

B
S

carry_in

carry_out

S = A xor B xor carry_in

carry_out = A&B | A&carry_in | B&carry_in

 (majority function)

 Small but slow!

 Also need to support the logic operations
(and, nor, or, xor)

 Bit wise operations (no carry operation involved)

 Need a logic gate for each function and a mux to choose
the output

 Also need to support the set-on-less-than
instruction (slt)

 Uses subtraction to determine if (a – b) < 0 (implies a < b)

 Also need to support test for equality (bne, beq)

 Again use subtraction: (a - b) = 0 implies a = b

 Also need to add overflow detection hardware
 overflow detection enabled only for add, addi, sub

 Immediates are sign extended outside the ALU with
wiring (i.e., no logic needed)

Tailoring the ALU to the MIPS ISA

A Simple ALU Cell with Logic Op Support

1-bit

FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

Modifying the ALU Cell for slt

1-bit

FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

Modifying the ALU for slt

0

0

set

 First perform a
subtraction

 Make the result 1 if
the subtraction yields
a negative result

 Make the result 0 if
the subtraction yields
a positive result

 tie the most
significant sum bit
(sign bit) to the low
order less input

A1

B1

A0

B0

A31

B31

+

result1

less

+

result0

less

+

result31

less

. . .

Modifying the ALU for Zero

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .

0

0

set

 First perform

subtraction

 Insert additional logic

to detect when all result

bits are zero

zero

. . .

add/subt
op

 Note zero is a 1
when result is all
zeros

Overflow Detection

Overflow occurs when the result is too large to
represent in the number of bits allocated

 adding two positives yields a negative

 or, adding two negatives gives a positive

 or, subtract a negative from a positive gives a negative

 or, subtract a positive from a negative gives a positive

On your own: Prove you can detect overflow by:

 Carry into MSB xor Carry out of MSB

1

1

1 1 0

1

0

1

1

0

0 1 1 1

0 0 1 1 +

7

3

0

1

– 6

1 1 0 0

1 0 1 1 +

–4

– 5

7 1

0

Modifying the ALU for Overflow

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .

0

0

set

 Modify the most

significant cell to

determine overflow

output setting

 Enable overflow bit

setting for signed
arithmetic (add, addi,

sub)

zero

. . .

add/subt
op

overflow

 More complicated than addition

 Can be accomplished via shifting and adding

 0010 (multiplicand)
 x_1011 (multiplier)
 0010

 0010 (partial product
 0000 array)
 0010

 00010110 (product)

 Double precision product produced

 More time and more area to compute

Multiplication

 Multiply produces a double precision product

 mult $s0, $s1 # hi||lo = $s0 * $s1

 Low-order word of the product is left in processor register
lo and the high-order word is left in register hi

 Instructions mfhi rd and mflo rd are provided to

move the product to (user accessible) registers in the
register file

MIPS Multiply Instruction

op rs rt rd shamt funct

 Multiplies are done by fast, dedicated hardware
and are much more complex (and slower) than
adders

 Hardware dividers are even more complex and
even slower

Division

dividend

divisor

partial

remainder

array

quotient

remainder

0 0 0

0

0

0

 Divide generates the reminder in hi and the
quotient in lo

 div $s0, $s1 # lo = $s0 / $s1

 # hi = $s0 mod $s1

 Instructions mflo rd and mfhi rd are provided to

move the quotient and reminder to (user accessible)
registers in the register file

MIPS Divide Instruction

 As with multiply, divide ignores overflow so
software must determine if the quotient is too
large. Software must also check the divisor to
avoid division by 0.

op rs rt rd shamt funct

Integer Multiplication in MIPS - revisited

Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

 32-bit multiplication produces a 64-bit Product

 Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not

needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

Integer Division in MIPS

Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

Division produces quotient and remainder

 Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

Shift Operations

Shifts move all the bits in a word left or right

 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

 sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

Notice that a 5-bit shamt field is enough to shift a
32-bit value 25 – 1 or 31 bit positions

 Logical shifts fill with zeros, arithmetic left shifts fill
with the sign bit

 The shift operation is implemented by hardware
separate from the ALU

 MIPS compare and branch instructions:

 beq Rs, Rt, label if (Rs == Rt) branch to label

 bne Rs, Rt, label if (Rs != Rt) branch to label

 MIPS compare to zero & branch instructions:

 Compare to zero is used frequently and implemented efficiently

 bltz Rs, label if (Rs < 0) branch to label

 bgtz Rs, label if (Rs > 0) branch to label

 blez Rs, label if (Rs <= 0) branch to label

 bgez Rs, label if (Rs >= 0) branch to label

 beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

Branch Instruction Format

 The branch instructions modify the PC register only

 PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC =PC+4

 Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Unconditional Jump Instruction

Unconditional Jump instruction has the following syntax:

 j label # jump to label

 . . .

 label:

 The jump instruction is always taken

 The Jump instruction is of the J-type format:

 The jump instruction modifies the program counter PC:

 The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00 PC4

multiple

of 4

Translating an IF Statement

 Consider the following IF statement:

 if (a == b) c = d + e; else c = d – e;

 Given that a, b, c, d, e are in $t0 … $t4 respectively

 How to translate the above IF statement?

 bne $t0, $t1, else

 addu $t2, $t3, $t4

 j next

 else: subu $t2, $t3, $t4

 next: . . .

Logical AND Expression

 Programming languages use short-circuit

evaluation

 If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

 bgtz $t1, L1 # first condition

 j next # skip if false

L1: bltz $t2, L2 # second condition

 j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

 blez $t1, next # 1st condition false?

 bgez $t2, next # 2nd condition false?

 addiu $t3, $t3, 1 # both are true

next:

Logical OR Expression

 Short-circuit evaluation for logical OR

 If first condition is true, second condition is skipped

 Use fall-through to keep the code as short as possible

 bgtz $t1, L1 # 1st condition true?

 bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

Compare Instructions

MIPS also provides set less than instructions

 slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

 sltu Rd, Rs, Rt unsigned <

 slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

 sltiu Rt, Rs, imm unsigned <

 Signed / Unsigned comparisons compute different

results

 Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

 slt $t2, $t0, $t1 computes $t2 = 0

 sltu $t2, $t0, $t1 computes $t2 = 1

Compare Instruction Formats

 The other comparisons are defined as pseudo-
instructions:

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

Pseudo-Branch Instructions

 MIPS hardware does NOT provide the following

instructions:

 blt, bltu branch if less than (signed / unsigned)

 ble, bleu branch if less or equal (signed / unsigned)

 bgt, bgtu branch if greater than (signed / unsigned)

 bge, bgeu branch if greater or equal (signed / unsigned)

MIPS assembler defines them as pseudo-instructions: Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

 slt $at, $t0, $t1
 bne $at, $zero, label

 slt $at, $t1, $t0
 beq $at, $zero, label

Using Pseudo-Branch Instructions

 Translate the IF statement to assembly language

 $t1 and $t2 values are unsigned

 $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

 $t3 = $t4;

}

if (($t3 <= $t4) &&

 ($t4 >= $t5)) {

 $t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

Conditional Move Instructions

Conditional move can eliminate branch & jump
instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

 bne $t0, $0, L1

 addu $t1, $t2, $t3

 j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Pseudo-Instructions

 Introduced by the assembler as if they were real instructions

 Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

 Given that registers $t0, $t1, $t2 are used for A,

B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2 Op = addiu Rs = $t1 -1 = 0b1111111111111111

