Lecture 5B

Machine Number Representation

Bits are just bits (have no inherent meaning)

- conventions define the relationships between bits and numbers
- Binary numbers (base 2) - integers
$0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0011 \rightarrow 0100 \rightarrow 0101 \rightarrow \ldots$
- in decimal from 0 to $2^{n}-1$ for n bits
\square Of course, it gets more complicated
- storage locations (e.g., register file words) are finite, so have to worry about overflow (i.e., when the number is too big to fit into 32 bits)
- have to be able to represent negative numbers, e.g., how do we specify -8 in

$$
\text { addi } \$ s p, \$ s p,-8 \quad \# \$ s p=\$ s p-8
$$

- in real systems have to provide for more that just integers, e.g., fractions and real numbers (and floating point) and alphanumeric (characters)

Possible Representations

Sign Mag.	Two's Comp.	One's Comp.
	$1000=-8$	
$1111=-7$	$1001=-7$	$1000=-7$
$1110=-6$	$1010=-6$	$1001=-6$
$1101=-5$	$1011=-5$	$1010=-5$
$1100=-4$	$1100=-4$	$1011=-4$
$1011=-3$	$1101=-3$	$1100=-3$
$1010=-2$	$1110=-2$	$1101=-2$
$1001=-1$	$1111=-1$	$1110=-1$
$1000=-0$		$1111=-0$
$0000=+0$	$0000=0$	$0000=+0$
$0001=+1$	$0001=+1$	$0001=+1$
$0010=+2$	$0010=+2$	$0010=+2$
$0011=+3$	$0011=+3$	$0011=+3$
$0100=+4$	$0100=+4$	$0100=+4$
$0101=+5$	$0101=+5$	$0101=+5$
$0110=+6$	$0110=+6$	$0110=+6$
$0111=+7$	$0111=+7$	$0111=+7$

MIPS Representations

- 32-bit signed numbers (2's complement):


```
-••
minint
```

```
1111 1111 1111 1111 1111 1111 1111 1101 two = - 3 3ten
```

1111 1111 1111 1111 1111 1111 1111 1101 two = - 3 3ten
1111 1111 1111 1111 1111 1111 1111 1110 two = - 2 2ten
1111 1111 1111 1111 1111 1111 1111 1110 two = - 2 2ten
1111 1111 1111 1111 1111 1111 1111 1111 two = - 1 1ten

```
1111 1111 1111 1111 1111 1111 1111 1111 two = - 1 1ten
```

- What if the bit string represented addresses?
- need operations that also deal with only positive (unsigned) integers

Two's Complement Operations

\square Negating a two's complement number complement all the bits and then add a 1

- remember: "negate" and "invert" are quite different!
- Converting n-bit numbers into numbers with more than n bits:
- MIPS 16-bit immediate gets converted to 32 bits for arithmetic
- sign extend - copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & \text {-> } 0000 & 0010 \\
1010 & \text {-> } 1111 & 1010
\end{array}
$$

- sign extension versus zero extend (lb vs. lbu)

Design the MIPS Arithmetic Logic Unit (ALU)

- Must support the Arithmetic/Logic operations of the ISA
add, addi, addiu, addu
sub, subu
mult, multu, div, divu

and, andi, nor, or, ori, xor, xorim (operation)
beq, bne, slt, slti, sltiu, sltu

With special handling for

- sign extend-addi, addiu, slti, sltiu
- zero extend-andi, ori, xori
- overflow detection - add, addi, sub

MIPS Arithmetic and Logic Instructions

Type	op	funct
ADDI	001000	xx
ADDIU	001001	xx
SLTI	001010	xx
SLTIU	001011	xx
ANDI	001100	xx
ORI	001101	xx
XORI	001110	xx
LUI	001111	xx

Type	op	funct
ADD	000000	100000
ADDU 000000	100001	
SUB	000000	100010
SUBU	000000	100011
AND	000000	100100
OR	000000	100101
XOR	000000	100110
NOR	000000	100111

Type	op	funct
	000000	101000
	000000	101001
SLT	000000	101010
SLTU	000000	101011
	000000	101100

Design Trick: Divide \& Conquer

Break the problem into simpler problems, solve them and glue together the solution
\square Example: assume the immediates have been taken care of before the ALU

- now down to 10 operations
- can encode in 4 bits

0	add
1	addu
2	sub
3	subu
4	and
5	or
6	xor
7	nor
a	slt
b	sltu

Addition \& Subtraction

- Just like in grade school (carry/borrow 1s)
0111
0110
$+\quad 101$
1101
0111
- 0110
0110
$\begin{array}{r}-\quad 0101 \\ \hline 0001\end{array}$
- Two's complement operations are easy
- do subtraction by negating and then adding

0111	\rightarrow		
-0110	\rightarrow		
0001		\quad	0111
---:			
$+\quad 1010$			
10001			

- Overflow (result too large for finite computer word)
- e.g., adding two n-bit numbers does not yield an n-bit number

0111
$\begin{array}{r}+0001 \\ \hline\end{array}$
1000

Building a 1-bit Binary Adder

A	B	carry_in	carry_out	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& \text { S = A xor B xor carry_in } \\
& \text { carry_out }=\text { A\&B | A\&carry_in | B\&carry_in }
\end{aligned}
$$

- How can we use it to build a 32-bit adder?
\square How can we modify it easily to build an adder/subtractor?

Building 32-bit Adder

\square Just connect the carry-out of the least significant bit FA to the carry-in of the next least significant bit and connect . . .

- Ripple Carry Adder (RCA)
- advantage: simple logic, so small (low cost)
- disadvantage: slow and lots of glitching (so lots of energy consumption)

A 32-bit Ripple Carry Adder/Subtractor

\square Remember 2's complement is just

- complement all the bits
control
$\left.\begin{array}{r}(0=\text { add }, 1=\text { sub })- \\ B_{0}\end{array}\right) \quad \begin{aligned} & B_{0} \text { if control }=0 \\ & !B_{0} \text { if control }=1\end{aligned}$
- add a 1 in the least significant bit

$$
\begin{aligned}
& \text { A } 0111 \rightarrow 0111 \\
& \text { B }-0110 \rightarrow+1001 \\
& 0001 \quad 1 \\
& 10001
\end{aligned}
$$

Overflow Detection and Effects

\square Overflow: the result is too large to represent in the number of bits allocated
\square When adding operands with different signs, overflow cannot occur! Overflow occurs when

- adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive gives a negative
- or, subtract a positive from a negative gives a positive

New MIPS Instructions

Category	Instr	Op Code		Example	Meaning
Arithmetic (R \& I format)	add unsigned	0 and 21	addu	\$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3
	sub unsigned	0 and 23	subu	\$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3
	add imm.unsigned	9	addiu \$	\$s1, \$s2, 6	\$s1 = \$s2 + 6
Data Transfer	Id byte unsigned	24	Ibu	\$s1, 25(\$s2)	\$s1 = Mem(\$s2+25)
	Id half unsigned	25	Ihu	\$s1, 25(\$s2)	\$s1 = Mem(\$s2+25)
Cond. Branch (I \& R format)	set on less than unsigned	0 and 2b	sltu	\$s1, \$s2, \$s3	$\begin{aligned} & \text { if }(\$ s 2<\$ s 3) \$ s 1=1 \\ & \text { else } \quad \$ s 1=0 \end{aligned}$
	set on less than imm unsigned	b	sltiu \$	\$s1, \$s2, 6	$\begin{aligned} & \text { if }(\$ s 2<6) \$ s 1=1 \\ & \text { else } \\ & \$ s 1=0 \end{aligned}$

\square Sign extend-addiu, addiu, slti, sltiu
\square Zero extend-andi, ori, xori

- Overflow detected-add, addi, sub

Review: MIPS Arithmetic Instructions

Review: A 32-bit Adder/Subtractor

Tailoring the ALU to the MIPS ISA

Also need to support the logic operations
(and, nor, or, xor)

- Bit wise operations (no carry operation involved)
- Need a logic gate for each function and a mux to choose the output
\square Also need to support the set-on-less-than instruction (sl t)
- Uses subtraction to determine if ($a-b$) < 0 (implies $a<b$)
\square Also need to support test for equality (bne, beq)
- Again use subtraction: $(a-b)=0$ implies $a=b$
\square Also need to add overflow detection hardware
- overflow detection enabled only for add, addi, sub
- Immediates are sign extended outside the ALU with wiring (i.e., no logic needed)

A Simple ALU Cell with Logic Op Support

Modifying the ALU Cell for slt

Modifying the subtraction

\square Make the result 1 if the subtraction yields a negative result

- Make the result 0 if the subtraction yields a positive result
- tie the most significant sum bit (sign bit) to the low order less input

Overflow Detection

\square Overflow occurs when the result is too large to represent in the number of bits allocated

- adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive gives a negative
- or, subtract a positive from a negative gives a positive
- On your own: Prove you can detect overflow by:
- Carry into MSB xor Carry out of MSB

Multiplication

\square More complicated than addition

- Can be accomplished via shifting and adding

0010 $\times \frac{1011}{0010}$ 0010 0000 0010	(multiplicand) (multiplier)
(partial product array)	

\square Double precision product produced

- More time and more area to compute

MIPS Multiply Instruction

- Multiply produces a double precision product

```
    mult \$s0, \$s1 \# hi\|\|lo = \$s0 * \$s1
```

op	rs	rt	rd	shamt	funct

- Low-order word of the product is left in processor register lo and the high-order word is left in register hi
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are done by fast, dedicated hardware and are much more complex (and slower) than adders
- Hardware dividers are even more complex and even slower

Division

MIPS Divide Instruction

\square Divide generates the reminder in hi and the quotient in lo

$$
\begin{aligned}
\text { div } \$ s 0, \$ s 1 \quad \text { \# lo } & =\$ s 0 / \text { \$s1 } \\
& \# \text { hi }
\end{aligned}
$$

op	rs	rt	rd	shamt	funct

- Instructions mflo rd and mfhi rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0 .

Integer Multiplication in MIPS - revisited

Multiply instructions

- mult Rs, Rt Signed multiplication
- multu Rs, Rt Unsigned multiplication
-32-bit multiplication produces a 64-bit Product
- Separate pair of 32-bit registers
- $\mathrm{HI}=$ high-order 32-bit of product
- LO = low-order 32-bit of product

MIPS also has a special mul instruction

- mul Rd, Rs, Rt Rd $=$ Rs \times Rt
- Copy LO into destination register Rd
- Useful when the product is small (32 bits) and $\mathbf{H I}$ is not

Integer Division in MIPS

Divide instructions

- div Rs, Rt
Signed division
- divu Rs, Rt
Unsigned division

Division produces quotient and remainder
Separate pair of 32-bit registers

- $\mathrm{HI}=32$-bit remainder
- LO = 32-bit quotient
- If divisor is 0 then result is unpredictable

\square Moving data from HI, LO to MIPS registers
- mfhi Rd (Rd=HI)
- mflo Rd (Rd = LO)

Integer Multiply and Divide Instructions

Instruction		$\begin{array}{\|c\|} \text { Meaning } \\ \hline \text { HI, LO }=\text { Rs } \times_{s} \text { Rt } \end{array}$	Format					
mult	Rs, Rt		Op $=0$	Rs	Rt	0	0	0x18
multu	Rs, Rt	HI, LO $=$ Rs \times_{u} Rt	Op = 0	Rs	Rt	0	0	0x19
mul	Rd, Rs, Rt	$\mathrm{Rd}=\mathrm{Rs} \mathrm{x}_{\mathrm{s}} \mathrm{Rt}$	0x1c	Rs	Rt	Rd	0	2
div	Rs, Rt	$\mathrm{HI}, \mathrm{LO}=\mathrm{Rs} / \mathrm{s}_{\text {Rt }}$	Op = 0	Rs	Rt	0	0	0x1a
divu	Rs, Rt	$\mathrm{HI}, \mathrm{LO}=\mathrm{Rs} /{ }_{\mathrm{u}} \mathrm{Rt}$	Op = 0	Rs	Rt	0	0	0x1b
mfhi	Rd	$\mathrm{Rd}=\mathrm{HI}$	Op = 0	0	0	Rd	0	0x10
mflo	Rd	Rd $=$ LO	Op = 0	0	0	Rd	0	0x12
mthi	Rs	$\mathrm{HI}=\mathrm{Rs}$	Op = 0	Rs	0	0	0	0x11
mtlo	Rs	LO = Rs	Op $=0$	Rs	0	0	0	0x13

$$
\begin{array}{ll}
x_{\mathrm{s}}=\text { Signed multiplication, } & \mathrm{x}_{\mathrm{u}}=\text { Unsigned multiplication } \\
/_{\mathrm{s}}=\text { Signed division }, & I_{\mathrm{u}}=\text { Unsigned division }
\end{array}
$$

Shift Operations

\square Shifts move all the bits in a word left or right
sll \$t2, \$s0, 8 \#\$t2 $=\$ s 0 \ll 8$ bits
srl \$t2, \$s0, 8 \#\$t2 = \$s0 >> 8 bits
sra \$t2, \$s0, 8 \#\$t2 = \$s0 >> 8 bits

op	rs	it	rd	shamt	funct

- Notice that a 5-bit shamt field is enough to shift a 32-bit value $2^{5}-1$ or 31 bit positions
- Logical shifts fill with zeros, arithmetic left shifts fill with the sign bit
- The shift operation is implemented by hardware separate from the ALU

MIPS Conditional Branch Instructions

\square MIPS compare and branch instructions:
beq Rs, Rt, label if (Rs == Rt) branch to label
bne Rs, Rt, label if (Rs != Rt) branch to label

- MIPS compare to zero \& branch instructions:

Compare to zero is used frequently and implemented efficiently
bltz Rs, label if (Rs < 0) branch to label
bgtz Rs, label if ($\mathrm{Rs}>0$) branch to label
blez Rs, label if (Rs <= 0) branch to label
bgez Rs, label if (Rs >= 0) branch to label

- beqz and bnez are defined as pseudo-instructions.

Branch Instruction Format

* Branch Instructions are of the I-type Format:

Op^{6}	Rs 5	Rt 5	16 -bit offset

Instruction	I-Type Format			
beq Rs, Rt, label	$\mathrm{Op}=4$	Rs	Rt	16-bit Offset
bne Rs, Rt, label	$\mathrm{Op}=5$	Rs	Rt	16-bit Offset
blez Rs, label	Op = 6	Rs	0	16-bit Offset
bgtz Rs, label	$\mathrm{Op}=7$	Rs	0	16-bit Offset
bltz Rs, label	$\mathrm{Op}=1$	Rs	0	16-bit Offset
bgez Rs, label	$\mathrm{Op}=1$	Rs	1	16-bit Offset

\square The branch instructions modify the PC register only
\square PC-Relative addressing:
If (branch is taken) PC = PC + 4+4×offset else PC=PC+4

Unconditional Jump Instruction

\square Unconditional Jump instruction has the following syntax:
j label \# jump to label
label:
\square The jump instruction is always taken
\square The Jump instruction is of the J-type format:
$\mathrm{Op}^{6}=2 \quad$ 26-bit address

- The jump instruction modifies the program counter PC:

PC^{4}	26-bit address	00

- The upper 4 bits of the PC are unchanged
multiple of 4

Translating an IF Statement

\square Consider the following IF statement:
if (a == b) c = d + e; else c = d - e;
Given that a, b, c, d, e are in \$t0 ... \$t4 respectively

- How to translate the above IF statement?

```
    bne $t0, $t1, else
    addu $t2, $t3, $t4
    j next
else: subu $t2, $t3, $t4
next: . . .
```


Logical AND Expression

- Programming languages use short-circuit evaluation

Better Translation of Logical AND

```
if (($t1 > 0) && ($t2 < 0)) {$t3+++;}
```

Allow the program to fall through to second condition
! (\$t1 > 0) is equivalent to ($\$ \mathrm{t} 1<=0$)
! (\$t2 < 0) is equivalent to (\$t2 >= 0)
Number of instructions is reduced from 5 to 3

```
# Better Translation ...
    blez $t1, next # 1'st condition false?
    bgez $t2, next # 2 nd condition false?
    addiu $t3, $t3, 1 # both are true
next:
```


Logical OR Expression

* Short-circuit evaluation for logical OR
* If first condition is true, second condition is skipped

```
if (($t1 > 0) || ($t2 < 0)) {$t3++;}
```

* Use fall-through to keep the code as short as possible

Compare Instructions

\square MIPS also provides set less than instructions slt Rd, Rs, Rt if (Rs <Rt) Rd=1 else Rd=0
sltu Rd, Rs, Rt unsigned <
slti Rt, Rs, imm if $(R s<i m m) R t=1$ else $R t=0$
sltiu Rt, Rs, imm unsigned <
\square Signed / Unsigned comparisons compute different results

Given that: \$t0 = 1 and \$t1 = -1 = 0xfffffffff slt \$t2, \$t0, \$t1 computes \$t2 = 0
sltu \$t2, \$t0, \$t1 computes \$t2 = 1

Compare Instruction Formats

Instruction	Meaning	Format					
slt Rd, Rs, Rt	$\mathrm{Rd}=\left(\mathrm{Rs}<_{\text {s }} \mathrm{Rt}\right)$? $1: 0$	Op=0	Rs	Rt	Rd	0	0x2a
sltu Rd, Rs, Rt	Rd= (Rs < $\left.{ }_{\text {L }} \mathrm{Rt}\right)$? $1: 0$	Op=0	Rs	Rt	Rd	0	0x2b
slti Rt, Rs, im	$\mathrm{Rt}=\left(\mathrm{Rs}<_{\text {s }} \mathrm{im}\right)$? $1: 0$	0xa	Rs	Rt	16-bit immediate		
sltiu Rt, Rs, im	$\mathrm{Rt}=\left(\mathrm{Rs}<_{u} \mathrm{im}\right)$? $1: 0$	0xb	Rs	Rt	16-bit immediate		

The other comparisons are defined as pseudoinstructions:
sea, sne, sgt, sgtu, sle, sleu, sge, sgeu

Pseudo-Instruction	Equivalent MIPS Instructions	
sgt \$t2, \$t0, \$t1	slt	\$t2, \$t1, \$t0
		subu \$t2, \$t0, \$t1
seq \$t2, \$t0, \$t1	sltiu	$\$ t 2, \$ t 2,1$

Pseudo-Branch Instructions

MIPS hardware does NOT provide the following instructions:

blt, bltu ble, bleu	branch if less than branch if less or equal	(signed / unsigned) (signed / unsigned) (signed / unsigned)
bgt, bgtu	branch if greater than bge, bgeu branch if greater or equal	(signed / unsigned)
Pseudo-Instruction	Equivalent MIPS Instructions	

\$at (\$1) is the assembler temporary register

Using Pseudo-Branch Instructions

Translate the IF statement to assembly language
\$t1 and \$t2 values are unsigned

```
if($t1 <= $t2) {
    $t3 = $t4;
}
```

```
bgtu $t1, $t2, L1
    move $t3, $t4
L1:
```

\$t3, \$t4, and \$t5 values are signed

```
if (($t3 <= $t4) &&
        ($t4 >= $t5)) {
    $t3 = $t4 + $t5;
}
```

bgt \$t3, \$t4, L1
blt \$t4, \$t5, L1
addu \$t3, \$t4, \$t5
L1:

Conditional Move Instructions

Instruction	Meaning						R-Type Format				
movz	Rd, Rs, Rt	if (Rt==0) Rd=Rs	$0 p=0$	$R s$	$R t$	$R d$	0	$0 x a$			
movn	Rd, Rs, Rt	if (Rt!=0) Rd=Rs	$0 p=0$	$R s$	$R t$	$R d$	0	$0 x b$			

$$
\text { if }(\$ t 0==0)\{\$ t 1=\$ t 2+\$ t 3 ;\} \text { else }\{\$ t 1=\$ t 2-\$ t 3 ;\}
$$

- Conditional move can eliminate branch \& jump instructions

Pseudo-Instructions

* Introduced by the assembler as if they were real instructions
* Facilitate assembly language programming

Pseudo-Instruction	Equivalent MIPS Instruction	
move \$t1, \$t2	addu \$t1, \$t2, \$zero	
not \$t1, \$t2	nor \$t1, \$t2, \$zero	
neg \$t1, \$t2	sub \$t1, \$zero, \$t2	
li \$t1, -5	addiu \$t1, \$zero, -5	
li \$t1, 0xabcd1234	lui \$t1, 0xabcd ori \$t1, \$t1, 0x1234	

The MARS tool has a long list of pseudo-instructions

Examples of I-Type ALU Instructions

- Given that registers \$t0, \$t1, \$t2 are used for A,

Expression	Equivalent MIPS Instruction
$\mathrm{A}=\mathrm{B}+5$;	addiu \$t0, \$t1, 5
$C=B-1 ;$	addiu \$t2, \$t1, -1
$A=B \& 0 x f ;$	andi \$t0, \$t1, 0xf
C = $\mathrm{B}^{\text {\| }}$ 0xf;	ori \$t2, \$t1, 0xf
C = 5;	addiu \$t2, \$zero, 5
$\mathrm{A}=\mathrm{B} ;$	addiu \$t0, \$t1, 0
Op = addiu Rs =	Rt $=\$$ t2 ${ }^{\text {-1 }}$

No need for subiu, because addiu has signed immediate
Register \$zero has always the value 0

