f Floating-point computations are vital for many applications, but correct implementation of floating-point hardware and software is very tricky. f Today we'll study the IEEE 754 standard for floating-point arithmetic.

- Floating-point number representations are complex, but limited.
- Addition and multiplication operations require several steps.
- The MIPS architecture includes support for floating-point arithmetic.

Floating-point representation

f IEEE numbers are stored using a kind of scientific notation.

$$
\pm \text { mantissa } \times \quad 2^{\text {exponent }}
$$

f We can represent floating-point numbers with three binary fields: a sign bit s, an exponent field e, and a fraction field f.

f The IEEE 754 standard defines several different precisions.

- Single precision numbers include an 8-bit exponent field and a 23-bit fraction, for a total of 32 bits.
- Double precision numbers have an 11-bit exponent field and a 52-bit fraction, for a total of 64 bits.
f There are also various extended precision formats. For example, Intel processors use an 80-bit format internally.

Mantissa

s	e	

f The field f contains a binary fraction.
f The actual mantissa of the floating-point value is $(1+\mathrm{f})$.

- In other words, there is an implicit 1 to the left of the binary point.
- For example, if f is $01101 \ldots$, the mantissa would be $1.01101 \ldots$
$f \quad$ There are many ways to write a number in scientific notation, but there is always a unique normalized representation, with exactly one nonzero digit to the left of the point.

$$
0.232 \times 10^{3}=23.2 \times 10^{1}=2.32 \times 10^{2}=\ldots
$$

f A side effect is that we get a little more precision: there are 24 bits in the mantissa, but we only need to store 23 of them.

Exponent

| s | e | f |
| :--- | :--- | :--- | :--- |

f The e field represents the exponent as a biased number.

- It contains the actual exponent plus 127 for single precision, or the actual exponent plus 1023 in double precision.
- This converts all single-precision exponents from -127 to +127 into unsigned numbers from 0 to 255 , and all double-precision exponents from -1024 to +1023 into unsigned numbers from 0 to 2047.
f Two examples with single-precision numbers are shown below.
- If the exponent is 4 , the e field will be $4+127=131\left(10000011_{2}\right)$.
- If e contains $01011101\left(93_{10}\right)$, the actual exponent is $93-127=-34$.

Converting an IEEE 754 number to decimal

| s | e | f |
| :--- | :--- | :--- | :--- |

fine decimal value of an IEEE number is given by the formula:

$$
(1-2 s) \times(1+f)^{\text {e-bias }}
$$

fHere, the s, f and e fields are assumed to be in decimal.
$-(1-2 s)$ is 1 or -1 , depending on whether the sign bit is 0 or 1.

- We add an implicit 1 to the fraction field f , as mentioned earlier.
- Again, the bias is either 127 or 1023 , for single or double precision.

Example IEEE-decimal conversion

```
fet's find the decimal value of the following IEEE number.
1 01111100 11000000000000000000000
first convert each individual field to decimal.
    - The sign bit s is 1.
    - The e field contains 01111100=12410.
    - The mantissa is 0.11000... = 0.75 10.
f Then just plug these decimal values of s, e and f into our formula.
2-bibs
    (1-2s)\times(1+f)
f This gives us (1-2) \times (1+0.75) \times 2 224-127 = (-1.75 * 2-3)=-0.21875.
```


Converting a decimal number to IEEE 754

FWhat is the single-precision representation of 347.625 ?

1. First convert the number to binary: $347.625=101011011.101_{2}$.
2. Normalize the number by shifting the binary point until there is a single 1 to the left:

$$
101011011.101 \times 2^{0}=1.01011011101 \times 2^{8}
$$

3. The bits to the right of the binary point, 01011011101_{2}, comprise the fractional field f .
4. The number of times you shifted gives the exponent. In this case, the field e should contain $8+127=135=10000111_{2}$.
5 . The number is positive, so the sign bit is 0 .
fine final result is:

$$
0 \quad 10000111 \quad 01011011101000000000000
$$

Special values

f The smallest and largest possible exponents $\mathrm{e}=00000000$ and $\mathrm{e}=11111111$ (and their double precision counterparts) are reserved for special values. f If the mantissa is always $(1+\mathrm{f})$, then how is 0 represented?

- The fraction field f should be $0000 . . .0000$.
- The exponent field e contains the value 00000000.
- With signed magnitude, there are two zeroes: +0.0 and -0.0 .
f There are representations of positive and negative infinity, which might sometimes help with instances of overflow.
- The fraction f is $0000 . . .0000$.
- The exponent field e is set to 11111111.
$f \quad$ Finally, there is a special "not a number" value, which can handle some cases of errors or invalid operations such as 0.0/0.0.
- The fraction field f is set to any non-zero value.
- The exponent e will contain 11111111.

Limits of the IEEE representation

Even some integers cannot be represented in the IEEE format.

> int $x=33554431 ;$
> float $y=33554431 ;$
> printf("\%d\n", x);
> printf("\%f\n", y);
fome simple decimal numbers cannot be represented exactly in binary to begin with.

$$
0.10_{10}=0.0001100110011 \ldots 2
$$

0.10

f During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an Iraqi Scud missile, and 28 Americans were killed.
$f \quad$ A later study determined that the problem was caused by the inaccuracy of the binary representation of 0.10 .

- The Patriot incremented a counter once every 0.10 seconds.
- It multiplied the counter value by 0.10 to compute the actual time.
$f \quad$ However, the (24-bit) binary representation of 0.10 actually corresponds to 0.099999904632568359375 , which is off by 0.000000095367431640625 .
$f \quad$ This doesn't seem like much, but after 100 hours the time ends up being off by 0.34 seconds-enough time for a Scud to travel 500 meters!
f Professor Skeel wrote a short article about this.
Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

Floating-point addition example

f To get a feel for floating-point operations, we'll do an addition example.

- To keep it simple, we'll use base 10 scientific notation.
- Assume the mantissa has four digits, and the exponent has one digit.
f The text shows an example for the addition:

$$
99.99+0.161=100.151
$$

As normalized numbers, the operands would be written as:

$$
9.999 \times 10^{1} \quad 1.610 \times 10^{-1}
$$

Steps 1-2: the actual addition

1. Equalize the exponents.

The operand with the smaller exponent should be rewritten by increasing its exponent and shifting the point leftwards.

$$
1.610 \times 10^{-1}=0.0161 \times 10^{1}
$$

With four significant digits, this gets rounded to 0.016×10^{1}.
This can result in a loss of least significant digits-the rightmost 1 in this case. But rewriting the number with the larger exponent could result in loss of the most significant digits, which is much worse.
2. Add the mantissas.

$$
\begin{array}{r}
9.999 \times 10^{1} \\
+\quad 0.016 \times 10^{1} \\
\hline 10.015 \times 10^{1}
\end{array}
$$

Steps 3-5: representing the result

3. Normalize the result if necessary.

$$
10.015 \times 10^{1}=1.0015 \times 10^{2}
$$

This step may cause the point to shift either left or right, and the exponent to either increase or decrease.
4. Round the number if needed.

$$
1.0015 \times 10^{2} \text { gets rounded to } 1.002 \times 10^{2}
$$

5. Repeat Step 3 if the result is no longer normalized.

We don't need this in our example, but it's possible for rounding to add digits-for example, rounding 9.9995 yields 10.000 .

Our result is 1.002×10^{2}, or 100.2 . The correct answer is 100.151 , so we have the right answer to four significant digits, but there's a small error already.

Extreme errors

f As we saw, rounding errors in addition can occur if one argument is much smaller than the other, since we need to match the exponents.
f An extreme example with 32 -bit IEEE values is the following.

$$
\left(1.5 \times 10^{38}\right)+\left(1.0 \times 10^{0}\right)=1.5 \times 10^{38}
$$

The number 1.0×10^{0} is much smaller than 1.5×10^{38}, and it basically gets rounded out of existence.
f This has some nasty implications. The order in which you do additions
affect the result, so $(x+y)+z$ is not always the same as $x+(y+z)$!

```
float x = -1.5e38;
float y = 1.5e38;
printf( "%f\n", (x + y) + 1.0 );
printf( "%f\n", x + (y + 1.0) );
```

The history of floating-point computation
f In the past, each machine had its own implementation of floating-point arithmetic hardware and/or software.

- It was impossible to write portable programs that would produce the same results on different systems.
- Many strange tricks were needed to get correct answers out of some machines, such as Crays or the IBM System 370.
f It wasn't until 1985 that the IEEE 754 standard was adopted.
- The standard is very complex and difficult to implement efficiently.
- But having a standard at least ensures that all compliant machines will produce the same outputs for the same program.

Floating-point hardware

fntel introduced the 8087 coprocessor around 1981.

- The main CPU would call the 8087 for floating-point operations.
- The 8087 had eight separate 80 -bit floating-point registers that could be accessed in a stack-like fashion.
- Some of the IEEE standard is based on the 8087.
f Intel's 80486, introduced in 1989, included floating-point support in the main processor itself.
f The MIPS floating-point architecture and instruction set still reflect the old coprocessor days, with separate floating-point registers and special instructions for accessing those registers.

MIPS floating-point architecture

f MIPS includes a separate set of 32 floating-point registers, \$f0-\$f31.

- Each register is 32 bits long and can hold a single-precision value.
- Two registers can be combined to store a double-precision number. You can have up to 16 double-precision values in registers $\$ \mathrm{f} 0-\$ \mathrm{f} 1$, \$f2-\$f3, ..., \$f30-\$f31.
- \$f0 is not hardwired to the value 0.0!
f There are also separate instructions for floating-point arithmetic. The operands must be floating-point registers, and not immediate values.

$$
\text { add.s } \$ f 1, \$ f 2, \$ f 3 \quad \# \text { single-precision } \$ f 1=\$ f 2+\$ f 3
$$

flhere are other basic operations as you would expect.

$$
\begin{aligned}
& \text { - sub.s for subtraction } \\
& \text { - mul.s for multiplication } \\
& \text { - div.s for division }
\end{aligned}
$$

Floating-point register transfers

f mov.s and mov.d copy data between floating-point registers.
$f \quad$ Use mtc1 and mfc1 to transfer data between the integer registers $\$ 0-\$ 31$ and the floating-point registers $\$ f 0-\$ f 31$.

- Be careful with the order of the operands in these instructions.

$$
\begin{array}{llll}
\text { mtc1 } & \$ t 0, \$ f 0 & \# \$ f 0=\$ t 0 \\
\text { mfc1 } & \$ t 0, \$ f 0 & \# \$ t 0=\$ f 0
\end{array}
$$

fthere are also special loads and stores for transferring data between the floating-point registers and memory. (The base address is still given in an integer register.)

$$
\begin{array}{lll}
\text { lwc1 } & \$ f 2,0(\$ a 0) & \# \$ f 2=M[\$ a 0] \\
\text { swc1 } & \$ f 4,4(\$ s p) & \# M[\$ s p+4]=\$ f 4
\end{array}
$$

Floating-point comparisons

f We also need special instructions for comparing floating-point values, since slt and sltu only apply to signed and unsigned integers.
$\begin{array}{lll}\text { c.1e.s } & \$ f 2, & \$ f 4 \\ \text { c.eq.s } & \$ f 2, & \$ f 4 \\ \text { c. } 7 \mathrm{t} . \mathrm{s} & \$ f 2, & \$ f 4\end{array}$
fihe comparison result is stored in a special coprocessor register
frou can then branch based on whether this register contains 1 or 0

$$
\begin{array}{ll}
\text { bc1t Labe1 } & \text { \# branch if true } \\
\text { bc1f Labe1 } & \text { \# branch if false }
\end{array}
$$

flere is how you can branch to the label Exit if $\$ f 2=\$ f 4$.

$$
\begin{array}{ll}
\text { c.eq.s } & \$ f 2, \$ f 4 \\
\text { bc1t } & \text { Exit }
\end{array}
$$

Floating-point functions

f There are conventions for passing data to and from functions.

- Floating-point arguments are placed in \$f12-\$f15.
- Floating-point return values go into \$f0-\$f1.
f We also split the register-saving chores, just like earlier.
- \$f0-\$f19 are caller-saved.
- \$f20-\$f31 are callee-saved.
fihese are the same basic ideas as before because we still have the same problems to solve-now it's just with different registers.

Floating-point constants

Type conversions

flou can also cast integers to floating-point values using the MIPS type conversion instructions.

Type to convert to	Floating-point destination
cvt.s.w	$\$ f 4, \$ f 2$
\uparrow	Floating-point

f Possible types for conversions are integers (w), single-precision (s) and double-precision (d) floating-point.

1i	$\$ t 0,32$	$\# \$$ t0 $=32$
mtc1	$\$ t 0, \$ f 2$	$\# \$+2=32$
cvt.s.w	$\$ f 4, \$ f 2$	$\# \$ \$ 4=32.0$

A complete example

f Here is a slightly different version of the textbook example of converting single-precision temperatures from Fahrenheit to Celsius.

$$
\text { celsius }=(\text { fahrenheit }-32.0) \times 5.0 / 9.0
$$

```
ce1sius:
1i
mtc1 $t0, $f4
cvt.s.w $f4, $f4
1i.s $f6, 0.5555
sub.s $f0, $f12, $f4
# $f0 = $f12 - 32.0
mul.s $f0, $f0, $f6 # $f0 = $f0 * 5.0/9.0
jr $ra
```

fthis example demonstrates a couple of things.

- The argument is passed in $\$ f 12$, and the return value is placed in $\$ f 0$.
- We use two different ways of loading floating-point constants.
- We used only caller-saved floating-point registers.

Summary

f The IEEE 754 standard defines number representations and operations for floating-point arithmetic.
$f \quad$ Having a finite number of bits means we can't represent all possible real numbers, and errors will occur from approximations.
f MIPS processors implement the IEEE 754 standard.

- There is a separate set of floating-point registers, \$f0-\$f31.
- New instructions handle basic floating-point operations, comparisons and branches. There is also support for transferring data between the floating-point registers, main memory and the integer registers.
- We still have to deal with issues of argument and result passing, and register saving and restoring in function calls.

