
data M

x

data M

x

ns

ns ns

1

address [31-0]

Instruction

50 ns

register 1 data 1

Read

data 2
Write

Write
Registers

address

address

data
memory

Zero

M

x

M
2 ns

x

I [15 - 11]

0

0

0 1 ns

 It gets worse!

We’ve made very optimistic assumptions about memory
latency:

Main memory accesses on modern machines is >50ns

For comparison, an ALU op on a typical machine ~0.3ns

Our worst case cycle (loads) includes 2 memory
accesses: 50 + 1 + 2 + 50 + 1 = 104

Read Instruction I [25 - 21]
Read Read

I [20 - 16] ALU Read Read 1

memory 0
register 2 Read 0

Result Write 50 ns u

u register u
Write Data 0

1 data
1

I [15 - 0] Sign

extend

0 ns

2

address [31-0]

Instruction

register 1 data 1

Read

Write
data 2

Write
Registers

address

address

data
memory

Zero

M

x

M

x
I [15 - 11] 2 ns 2 ns

I [15 - 0]

2 ns

Sign

reading the base register $sp ?ns

reading the data memory ?ns

 Review

•  Increment instructions like addi $t0, $t0, 1

have the potential to trash a register value in

the single cycle design; why don’t they?

•   How long to reading the instruction memory ?ns

 lw $t0,-4($sp)? computing memory address $sp-4 ?ns

storing data back to $t0 ?ns

Read Instruction I [25 - 21]
Read Read

I [20 - 16]
ALU Read Read 1

memory 0 register 2 Read 0
Result Write u

u register
u

Write
Data 0

1 data
1 0 ns

0 ns 1 ns 0 ns

extend

0 ns 1

2

3.  Performing an ALU computation

 Performance benefits

Each instruction can execute only the stages
that are necessary. Proposed execution stages

 Arithmetic 1.  Instruction fetch and PC increment

 Load 2.  Reading sources from the register file

 Store 4.  Reading or writing (data) memory

 Branches 5.  Storing data back to the register file

This would mean that instructions complete as

soon as possible, instead of being limited by

the slowest instruction

4

 A multicycle approach

We’ve informally described instructions as executing in
several steps

1.  Instruction fetch and PC increment.

2.  Reading sources from the register file.

3.  Performing an ALU computation.

4.  Reading or writing (data) memory.

5.  Storing data back to the register file.

What if we made these stages explicit in the hardware
design?

3

5

3

2.  Reading sources from the register file

 The clock cycle

Things are simpler if we assume that each stage takes one
clock cycle

 Instructions therefore require multiple clock cycles to execute

 But since each stage is fairly simple, the cycle time can be low

For the proposed execution stages below and the sample
datapath delays shown earlier, each stage needs 2ns at
most

 This accounts for the slowest devices, the ALU & data memory

 A 2ns clock cycle time corresponds to a 500MHz clock rate!

Proposed execution stages

1.  Instruction fetch and PC increment more than 50
3.  Performing an ALU computation times faster
4.  Reading or writing (data) memory than single
5.  Storing data back to the register file cycle

4

 Cost Benefits Of Multi-cycle Design

As an added bonus, we can eliminate some of the
hardware from the single-cycle datapath

 We will restrict ourselves to using each functional unit once

per cycle, just like before

 But since instructions require multiple cycles, we could
reuse some units in a different cycle during the execution of
a single instruction

For example, we could use the same ALU:

 to increment the PC (first clock cycle), and

 for arithmetic operations (third clock cycle)

Proposed execution stages

1.  Instruction fetch and PC increment

2.  Reading sources from the register file

3.  Performing an ALU computation

4.  Reading or writing (data) memory

5.  Storing data back to the register file
8

 Multicycle Design

•  Consider the changes required in our design

to turn it into a multicycle version.

•  Topics

 Hardware savings – adders

 Restructuring design – adding muxes

 Unifying the I- and D-memories – IorD mux

 Carrying results over cycles – temporary registers

 Register Write Signals

 Final Design

7

c

I [25 - 21]

ALU

LUSrc Dst

5

u

Add 1

1

M

u

x

Add

4

PC

PCSr

Read Instruction

Instruction

memory

Read Read

register 2 Read

Write

Write
Registers

data

I [20 - 16]

Read Read

Write

address

data
memory

0 Result 0

M

x

M

I [15 - 11]
x

A

Reg

 The extra adders of single-cycle

0

M

x

Shift

left 2

RegWrite

MemWrite MemToReg

address [31-0] register 1 data 1

Read Zero address data

data 2

u register u Write Data 0

1 1 ALUOp

MemRead

I [15 - 0] Sign
extend

10

 Two extra adders

Our original single-cycle datapath had an ALU and two
adders.

The arithmetic-logic unit had two responsibilities.

 Doing an operation on two registers for arithmetic
instructions.

 Adding a register to a sign-extended constant, to compute
effective addresses for lw and sw instructions.

One of the extra adders incremented the PC by
computing PC + 4.

The other adder computed branch targets, by adding a
sign-extended, shifted offset to (PC + 4).

9

u

6

x

u

Memory

Write Mem

Read Read

Read

data 2

register

Write

Zero

Result
0

M

x

0

1

4

MemWrite

Sign

Shift

 The multicycle adder setup highlighted
PCWrite

P ALUSrcA

Ior MemRead

0
RegDst RegWrite M

0 Address u
M

register 1 data 1 1 ALU

x

1 register 2 Read

data Data Write

u 2 ALUOp

1 data
Registers 3

0 ALUSrcB

M

x extend left 2

1

MemToReg

12

 Our new adder setup

We can eliminate both extra adders in a multicycle
datapath, and use just one ALU, with suitable muxes

A 2-to-1 mux ALUSrcA sets the first ALU input to be
the PC or a register

A 4-to-1 mux ALUSrcB selects the second ALU input :

—  the register file (for arithmetic operations),

—  a constant 4 (to increment the PC),

—  a sign-extended constant (for effective addresses), and

—  a sign-extended and shifted constant (for branch targets).

This permits a single ALU to perform all of the
necessary functions.
—  Arithmetic operations on two register operands

—  Incrementing the PC

—  Computing effective addresses for lw and sw

—  Adding a sign-extended, shifted offset to (PC + 4) for 11

branches

13

u extend

7

M

x ALU

u

1

Write Mem

data Data

Read Read

register 2 Read

Write

Write Registers

M

x

1

3

4

MemWrite

left 2

 The new memory setup highlighted

PCWrite

P ALUSrcA

Ior MemRead

RegDst RegWrite
0

0
Address u

M
Memory

register 1 data 1 1 Zero

x Read Result

0 data 2 0

u
register

2 ALUOp

1 data

0
ALUSrcB

M Sign Shift

x

1

MemToReg

14

 Eliminating a memory

Similarly, we can get by with one unified memory, which
will store both program instructions and data

This memory is used in the instruction fetch and data
access stages, and an address could come from:

 the PC register (when we’re fetching an instruction), or

 the ALU output (for the effective address of a lw or sw)

We add another 2-to-1 mux, IorD, to decide whether the
memory is being accessed for instructions or data

Proposed execution stages

1.  Instruction fetch and PC increment

2.  Reading sources from the register file

3.  Performing an ALU computation

4.  Reading or writing (data) memory

5.  Storing data back to the register file

x x

0

Source

u

8

Read

data 2

register

Write Registers

Write Mem

Result ALU

0

M

x

PC [31-26]

[20-16]

4

Sign

Shift
data

1

u 0

ALU M

0
MemRead

M A

 The final multicycle datapath

PCWrite

P ALUSrcA
IorD

0
RegDst RegWrite M

Read Read x

u Address register 1 data 1 1
Zero u

1 Memory
IRWrite

register 2 Read B Out 1

Write

data Data [25-21] u 1 ALUOp

[15-11] 1 data

MemWrite [15-0] 2

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2

register

MemToReg

16

 Intermediate registers

Sometimes we need the output of a functional unit in a
later clock cycle during one instruction execution

 The instruction word fetched in stage 1 determines the

destination of the register write in stage 5

 The ALU result for an address computation in stage 3 is

needed as the memory address for lw or sw in stage 4

These outputs will have to be stored in intermediate
registers for future use. Otherwise they would
probably be lost by the next clock cycle

 The instruction read in stage 1 is saved in instruction register

 Register file outputs from stage 2 are saved in registers A and

B

 The ALU output will be stored in a register ALUOut

 Any data fetched from memory in stage 4 is kept in the
memory data register, also called MDR

15

18

u u

1 1

PCSource

add $s4, $t1, $t2
MemToReg

2.  Reading sources from the register file

5.  Storing data back to the register file

9

register 1 data 1

register 2 Read
Write

Write Registers

Address

Memory

Write Mem

1 Zero

B

Out 0

M

x

0

1 [31-26]

[20-16]

[15-0]

4

MemWrite

Memory

register

x extend left 2

u 0

ALU

0 MemRead

A

PCWrite Final Design

P ALUSrcA
IorD

0

RegDst RegWrite M

M Read Read
x

M

x
IRWrite Read Result

ALU x

data 2

data Data [25-21] u register
2 ALUOp

[15-11] 1 data 3

Instruction 0 ALUSrcB

register M

u Sign Shift

data 1

1.  Instruction fetch and PC increment

lw $t0, -4($sp) 3.  Performing an ALU computation

beq $at, $0, offset 4.  Reading or writing (data) memory

 Register write control signals

We must add a few more control signals to the datapath

Since instructions now take a variable number of cycles
to execute, we cannot update the PC on each cycle

 Instead, a PCWrite signal controls the loading of the PC

 The instruction register also has a write signal, IRWrite. We

need to keep the instruction word for the duration of its

execution, and must explicitly re-load the instruction register

when needed

The other intermediate registers, MDR, A, B and

ALUOut, will store data for only one clock cycle at

most, and do not need write control signals

17

x

1

x

1

u

x x

0

Source

u

20

10

Read

data 2

register

Write Registers

Write Mem

Result ALU

0

M

x

PC [31-26]

[20-16]

4

Sign

Shift
data

1

u 0

ALU M

0
MemRead

M A

 Register File Read

PCWrite

P ALUSrcA
IorD

0
RegDst RegWrite M

Read Read x

u Address register 1 data 1 1
Zero u

1 Memory
IRWrite

register 2 Read B Out 1

Write

data Data [25-21] u 1 ALUOp

[15-11] 1 data

MemWrite [15-0] 2

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2

register

MemToReg

register 2 Read

Write

data
Registers

Memory

data Data

Out

B

u

1

2 ALUOp

3

[25-21]

[15-11]

Sign

Shift
data

1

u 0

1 ALU M

register 1 data 1 A
0

MemRead
M

Address

Stage 1: Instruction fetch & PC increment
PCWrite

PC IR = Mem[PC] ALUSrcA

IorD

0
RegDst RegWrite M

Read Read x

u Zero u

IRWrite
Read

Result
ALU

0 data 2 0

Write Mem [31-26] M
register 4 1 PCSource

[20-16] x Write

MemWrite [15-0]

Instruction 0 ALUSrcB

register M

Memory x extend left 2 PC = PC + 4

register

MemToReg

19

x

1

x

1

Source

u

USrcA

x

1

u Do some computation

on two source registers

11

x

1

register 2 Read

Write

data
Registers

Memory

data Data

Out

B

u

1

2 ALUOp

3

[25-21]

[15-11]

Sign

Shift
data

1

u 0

1 ALU M

PC

AL

0
MemRead

M
Address register 1 data 1 A

Stage 3 (R-type): instruction execution
PCWrite

Save the result
IorD in ALUOut

0
RegDst RegWrite M

Read Read x

u Zero u

IRWrite
Read

Result
ALU

0 data 2 0

Write Mem [31-26] M
register 4 1 PCSource

[20-16] x Write

MemWrite [15-0]

Instruction 0 ALUSrcB

register M

Memory x extend left 2

register

MemToReg

22

register 2 Read

Write

Write Registers

Memory

Write Mem

Out

B

M

x

PC

1

3

Compute branch

target address

[31-26]

[20-16]

4

Sign

Shift
data

1

u 0

1 ALU M

IorD

0
MemRead

M
Address register 1 data 1 A

Stage 2: Reg fetch & branch target
PCWrite

Read source
PC registers ALUSrcA

0
RegDst RegWrite M

Read Read x

u Zero u

IRWrite Read Result
ALU

0 data 2 0

data Data [25-21] u register
2 ALUOp

[15-11] 1 data

MemWrite [15-0]

Instruction 0 ALUSrcB

register M

Memory x extend left 2

register

MemToReg

21

Take the ALU result
USrcA

Source

[25-21]

u

x

1

x

1

u

address and store it in

12

register 2 Read

Write

data
Registers

Memory

data Data

Out

B

u

1

2 ALUOp

3

Compute an effective

[25-21]

[15-11]

Sign

Shift
data

1

u 0

1 ALU M

0
MemRead

M
Address register 1 data 1 A

Stage 3 (sw): compute effective address
PCWrite

P ALUSrcA
IorD

0
RegDst RegWrite M

Read Read x

u Zero u

IRWrite
Read

Result
ALU

0 data 2 0

Write Mem [31-26] M
register 4 1 PCSource

[20-16] x Write

MemWrite [15-0]

Instruction 0 ALUSrcB

register M

Memory x extend left 2

register ALUOut

MemToReg

24

0

M

PC register “rd” AL

u 0

M

x

1

MemRead

register 2 Read

Write

register

Write Registers

A ALU

Memory

data Data

x

1

Out

B

M

u

PC

1 ALUOp

2

[31-26]

[20-16]

[15-0]

4

MemWrite

Sign

Shift
data

1

Stage 4 (R-type): write back
PCWrite

...and store it to

IorD from the last cycle...

0
RegDst RegWrite M

Read Read x

u Address register 1 data 1 1 Zero u

IRWrite Read Result
ALU

0 data 2 0

Write Mem

x

[15-11] 1 data

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2

register

MemToReg

23

Use the effective
USrcA

x

0

u

x

0

u

13

x

Read

data 2

register

data

Write Mem

data Data

Result ALU

0

u

1

1 ALUOp

[25-21]

[15-11]

Sign

Shift
data

1

u 0

ALU M

0
MemRead

M A

Stage 4 (lw): memory read
PCWrite

...to read data
PC from memory... ALUSrcA Use the effective

IorD address from stage 3...
0

RegDst RegWrite M

Read Read x

u Address register 1 data 1 1 Zero u

1 Memory
IRWrite

register 2 Read B Out 1

[31-26] M
Write

4 PCSource

[20-16] x Write Registers

MemWrite [15-0] 2

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2

register

MemToReg

...into MDR.

26

x

Read

data 2

register

data

Write Mem

data Data

Result ALU

0

u

1

1 ALUOp

...to store data

[25-21]

[15-11]

Sign

Shift
data

1

u 0

ALU M

PC AL

0
MemRead

M A

Stage 4 (sw): memory write
PCWrite

...into memory.

IorD address from stage 3...

0
RegDst RegWrite M

Read Read x

u Address register 1 data 1 1 Zero u

1 Memory
IRWrite

register 2 Read B Out 1

[31-26] M
Write

4 PCSource

[20-16] x Write Registers

MemWrite [15-0] 2

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2 from one of the
register registers...

MemToReg

25

Source

[25-21]

u

14

 Summary

A single-cycle CPU has two main disadvantages

 The cycle time is limited by the worst case latency

 It requires more hardware than necessary

A multicycle processor splits instruction execution into
several stages

 Instructions only execute as many stages as required

 Each stage is relatively simple, so the clock cycle time is

reduced

 Functional units can be reused on different cycles

We made several modifications to the single-cycle
datapath

 The two extra adders and one memory were removed

 Multiplexers were inserted so the ALU and memory can be
used for different purposes in different execution stages

 New registers are needed to store intermediate results
28

u

0

M

IorD

0

M

x

1

MemRead

register 2 Read

Write

register

Write Registers

A ALU

Memory

data Data

x

1

Out

B

M

u

PC

1 ALUOp

2

[31-26]

[20-16]

[15-0]

4

MemWrite

Sign

Shift
data

1

Stage 5 (lw): register write
PCWrite

...and store it
PC in register rt. ALUSrcA

0
RegDst RegWrite M

Read Read x

u Address register 1 data 1 1 Zero u

IRWrite Read Result
ALU

0 data 2 0

Write Mem

x

[15-11] 1 data

Instruction 0 ALUSrcB

register M 3

Memory x extend left 2

register

MemToReg

Take MDR...

27

