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                        It gets worse!    

We’ve made very optimistic assumptions about memory 
latency: 

Main memory accesses on modern machines is >50ns   

For comparison, an ALU op on a typical machine ~0.3ns   

Our worst case cycle (loads) includes 2 memory 
accesses: 50 + 1 + 2 + 50 + 1 = 104   
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                             Review    

•  Increment instructions like addi $t0, $t0, 1 

have the potential to trash a register value in 

the single cycle design; why don’t they?  

•   How long to           reading the instruction memory             ?ns 

   lw $t0,-4($sp)?       computing memory address $sp-4          ?ns  

storing data back to $t0                        ?ns 

Read         Instruction   I [25 - 21]                   
Read                      Read
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3.  Performing an ALU computation 

 

                  Performance benefits    

Each instruction can execute only the stages 
that are necessary.            Proposed execution stages 

 Arithmetic                   1.  Instruction fetch and PC increment 

 Load                           2.  Reading sources from the register file 

 Store                           4.  Reading or writing (data) memory 

 Branches                    5.  Storing data back to the register file 

This would mean that instructions complete as 

soon as possible, instead of being limited by 

the slowest instruction  
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                 A multicycle approach    

We’ve informally described instructions as executing in 
several steps  

1.  Instruction fetch and PC increment.  

2.  Reading sources from the register file.  

3.  Performing an ALU computation.  

4.  Reading or writing (data) memory.  

5.  Storing data back to the register file.  

What if we made these stages explicit in the hardware 
design?  

3 
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2.  Reading sources from the register file 

 

                       The clock cycle    

Things are simpler if we assume that each stage takes one 
clock cycle  

 Instructions therefore require multiple clock cycles to execute  

 But since each stage is fairly simple, the cycle time can be low  

For the proposed execution stages below and the sample 
datapath delays shown earlier, each stage needs 2ns at 
most  

 This accounts for the slowest devices, the ALU & data memory  

 A 2ns clock cycle time corresponds to a 500MHz clock rate!  

Proposed execution stages 

1.  Instruction fetch and PC increment            more than 50 
3.  Performing an ALU computation                 times faster 
4.  Reading or writing (data) memory              than single 
5.  Storing data back to the register file          cycle 
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      Cost Benefits Of Multi-cycle Design    

As an added bonus, we can eliminate some of the 
hardware from the single-cycle datapath  

 We will restrict ourselves to using each functional unit once 

per cycle, just like before  

 But since instructions require multiple cycles, we could 
reuse some units in a different cycle during the execution of 
a single instruction  

For example, we could use the same ALU:  

 to increment the PC (first clock cycle), and   

 for arithmetic operations (third clock cycle)  

Proposed execution stages 

1.  Instruction fetch and PC increment 

2.  Reading sources from the register file 

3.  Performing an ALU computation 

4.  Reading or writing (data) memory 

5.  Storing data back to the register file 
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                     Multicycle Design    

•  Consider the changes required in our design 

to turn it into a multicycle version.   

•  Topics  

 Hardware savings – adders  

 Restructuring design – adding muxes  

 Unifying the I- and D-memories – IorD mux  

 Carrying results over cycles – temporary registers  

 Register Write Signals  

 Final Design  
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         The extra adders of single-cycle    
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data 2 
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MemRead 

I [15 - 0]                                                Sign  
extend 
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                     Two extra adders    

Our original single-cycle datapath had an ALU and two 
adders.  

The arithmetic-logic unit had two responsibilities.  

 Doing an operation on two registers for arithmetic 
instructions.  

 Adding a register to a sign-extended constant, to compute 
effective addresses for lw and sw instructions.  

One of the extra adders incremented the PC by 
computing PC + 4.  

The other adder computed branch targets, by adding a 
sign-extended, shifted offset to (PC + 4).  
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    The multicycle adder setup highlighted    
PCWrite 
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Ior MemRead 
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0          Address                                                                                                                           u 
M                                                                                    

register 1      data 1                             1          ALU 
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1   register 2       Read  

data Data                                                    Write 

u                                                                         2               ALUOp 

1            data     
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0                                                                       ALUSrcB 
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x                      extend            left 2 
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MemToReg 
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                  Our new adder setup    

We can eliminate both extra adders in a multicycle 
datapath, and use just one ALU, with suitable muxes  

A 2-to-1 mux ALUSrcA sets the first ALU input to be 
the PC or a register  

A 4-to-1 mux ALUSrcB selects the second ALU input :   

—  the register file (for arithmetic operations),  

—  a constant 4 (to increment the PC),  

—  a sign-extended constant (for effective addresses), and  

—  a sign-extended and shifted constant (for branch targets).  

This permits a single ALU to perform all of the 
necessary functions.  
—  Arithmetic operations on two register operands  

—  Incrementing the PC  

—  Computing effective addresses for lw and sw  

—  Adding a sign-extended, shifted offset to (PC + 4) for          11 

branches  
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       The new memory setup highlighted    

PCWrite 
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                  Eliminating a memory    

Similarly, we can get by with one unified memory, which 
will store both program instructions and data    

This memory is used in the instruction fetch and data 
access stages, and an address could come from:  

 the PC register (when we’re fetching an instruction), or  

 the ALU output (for the effective address of a lw or sw)  

We add another 2-to-1 mux, IorD, to decide whether the 
memory is being accessed for instructions or data  

Proposed execution stages 

1.  Instruction fetch and PC increment 

2.  Reading sources from the register file 

3.  Performing an ALU computation 

4.  Reading or writing (data) memory 

5.  Storing data back to the register file 
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            The final multicycle datapath    
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                  Intermediate registers    

Sometimes we need the output of a functional unit in a 
later clock cycle during one instruction execution   

 The instruction word fetched in stage 1 determines the 

destination of the register write in stage 5  

 The ALU result for an address computation in stage 3 is 

needed as the memory address for lw or sw in stage 4  

These outputs will have to be stored in intermediate 
registers for future use. Otherwise they would 
probably be lost by the next clock cycle  

 The instruction read in stage 1 is saved in instruction register  

 Register file outputs from stage 2 are saved in registers A and 

B  

 The ALU output will be stored in a register ALUOut  

 Any data fetched from memory in stage 4 is kept in the 
memory data register, also called MDR  
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PCWrite                                                             Final Design  
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1.  Instruction fetch and PC increment 

lw $t0, -4($sp)                       3.  Performing an ALU computation 

beq $at, $0, offset                 4.  Reading or writing (data) memory 

 

            Register write control signals    

We must add a few more control signals to the datapath  

Since instructions now take a variable number of cycles 
to execute, we cannot update the PC on each cycle  

 Instead, a PCWrite signal controls the loading of the PC  

 The instruction register also has a write signal, IRWrite. We 

need to keep the instruction word for the duration of its 

execution, and must explicitly re-load the instruction register 

when needed  

The other intermediate registers, MDR, A, B and 

ALUOut, will store data for only one clock cycle at 

most, and do not need write control signals  
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Stage 4 (sw): memory write  
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                           Summary    

A single-cycle CPU has two main disadvantages  

 The cycle time is limited by the worst case latency  

 It requires more hardware than necessary  

A multicycle processor splits instruction execution into 
several stages  

 Instructions only execute as many stages as required  

 Each stage is relatively simple, so the clock cycle time is 

reduced  

 Functional units can be reused on different cycles  

We made several modifications to the single-cycle 
datapath  

 The two extra adders and one memory were removed  

 Multiplexers were inserted so the ALU and memory can be 
used for different purposes in different execution stages  

 New registers are needed to store intermediate results  
28 

 

u 

 

0 

M 

 
IorD 

0 

M 

x 

1 

MemRead 

 

register 2     Read 

Write 

register 

Write    Registers 

A ALU 
 

Memory 

data        Data 

x 

1 
 

Out 

 
B  

M 

u 

 
PC  

1               ALUOp 

2 

[31-26]  

[20-16]  

[15-0] 

4 

 
MemWrite 

 
Sign 

 

Shift  
data 

 
1 

 

Stage 5 (lw): register write  
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