Eastern Mediterranean University
Computer Engineering Department

CMSE 222 Introduction to Computer Organization— Lab. 6

1.Introduction

QtSpim is software that will help you to simulate the execution of MIPS assembly
programs. It does a context and syntax check while loading an assembly program.
In addition, it adds in necessary overhead instructions as needed, and updates register
and memory content as each instruction is executed

In the experiments, we will use a simulator instead of a workstation with a MIPS
processor, because a simulator provides us miscellaneous features in understanding
the instruction set as well as in debugging. Moreover, a MIPS simulator is available
for almost any computer- and operating-system. Furthermore, the simulator can be
updated to include the new features, instructions or pseudo-instructions developed
in later versions of the processor for almost without any additional cost.

Note: you can find this IDE in https://sourceforge.net/projects/spimsimulator/files/
or on google as well.

2. MIPS ASSEMBLER SYNTAX

Comments in assembler files begin with a sharp sign " # ". Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars " ", and dots " . "
that do not begin with a numbet Instruction opcodes are reserved words that cannot
be used as identifiers. Labels are declared by putting them at the beginning of a line
followed by a colon, for example:

https://sourceforge.net/projects/spimsimulator/files/

.data
item: .word 1
.text
.globl main # Must be global
main: lw 5$t0l1l,item # loads temp.reg. $t01 with item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted as
hexadecimal. Hence, 256 and 0x100 denote the same value. Strings are enclosed in
doublequote "...". Special characters in strings follow the C convention: i.e.,
newline is \n; tab \t, and quote \" Some important SPIM (and also MIPS) assembler
directives:

.byte bi1,..., bn #store n specified values to the memory
.data <address> #sefdata segment address.
SPIM uses 0x10000000 as the beginning of the data segment. Set it to
0x10000000 to have correctly matching data labels to their addresses.
.globl sym # makes label globally accessable.
.space n # allocate n bytes of space In the current segment.
.text <address> # subsequent items are put in the user text segments,
The items in text segment may be only words, or instructions.
.word n # store the listed values of words into the memory.

3. QtSpim workspace:

The QtSpim simulator program has a pull-down menu appearance as shown below
and also you can see different area in QtSPIM as follow:

& QtSpim

e Simulstor Registers Text Segment Data Segment Window Help

N ERE RN N

FP Regs o X Text

R =900 Al User Text Segment [00400000]..[00440000] 3
PR = [00400000] 8£240000 1w §4, 0($29) + 183: 1v 820 0(Ssp) # arge

FCCR = [00400004] 27250004 addiu §5, §29, 4 ; 184: addiu $al Ssp 4 # argy

FER = [00400008] 24260004 addin §6, §5, 4 ; 185: addin a2 §al 4 £ envp

[0040000c) 00041080 sll §2, §4, 2 : 186 511 8v0 $a0 2

Single Precisial [00400010] 00223021 addu §6, §6, §2 ;187 addy Sa; SaZ §v0

RO =0 [00400014] 0c000000 jal 0x00ODOOO0 [main) ; 188: jal main

Rl =0 [00400018] 00000000 nop + 189: nop

R < [0040001c] 34020002 ori §2, §0, 10 ; 191: 11 5v0 10

FG3 =0 [00400020] 0000000c syscall ;102: syscall # syscall 10 (=xit)

ﬁ: = g Kernel Text Segment [80000000]..[80010000]

FG6 =0 [80000180] 0001d821 addm 527, §0, §1 : 90: move Skl $at # Zave Sat

F&7 =10 [80000184] 3c019000 1Iumi 81, -28672 3 82 sv §v0 sl # Not re-entrant and we cdn't
Fe8 =10 trust Ssp

FG9 =0 [80000188] 2220200 sw §2, 512(51)

FGI0 =0 [8000018¢c] 3c019000 1Iumi 41, -28672 : 93: av 530 32 # But we nesd to use thesd
FGll =10 reglsters

FG12 = 0 [80000190] ac240204 sw §4, 516(51)

FG13 =0 [80000194] 40126800 nfed §26, $13 ; 95: mfch $k0 $13 # Cause register

FG14 = 0 [80000198] 00132082 srl §4, 526, 2 2 96: arl %30 5k0 2 # Extract ExcCods Field
FG15 = 0 [8000019¢] 3084001 andi §4, §4, 31 ; 97: andi $a0 $a0 Oxif

Fcif; = g [800001a0] 34020004 ori §2, §0, 4 ; 1013 11 §v0 4 § syscall 4 (print str)
=0 ; e et

Cxi-ad

4. Main menu (green one):

1

. File:

L QtSpim
File Simulator Registers Text Segment Data Segment Window Help
A LlzTiofls PN @ = @
Fecent Files L
Data Texit
= Reinitialize and Load File
Text
=l SavelLogFile User Text Segment [004000007 .. [C
) [00400000] Sfa40000 1w $4, 0($29) s 183: 1w 520
= Print [00400004]1 27a50004 addin §5, $29, 4 ;s 184: addiu £
- [00400008] 24a60004 addia $6, §$5, 4 s 185: addiu £
[0040000c] 00041080 =11 $2, $4, 2 s 186: s11 5veC
Single Precision [00400010] 00c23021 adda 56, 56, 52) 7 187: addu ga
FCO B [DO0400014] OQcOOOO00 Jal O=x00000000 [main] s 18E8: Jal mai
FG1 = o [00400018] 00000000 mnop s 185: nop
PGz — 0O [0040001c] 3402000a ori $2, S0, 10 s 191: 1i 5wvo
FCG3 =0 [DO0400020] OQO0000c syscall ;s 18Z: syscall
FG4 = 0O
FCS =0 Fernel Text Segment [S§00000007 ..
FOSE = O [E0000180] 00014821 adda $27, $0, $1 s 00: move S5k1
FGT = O [80000184] 3cOlS000 1lui $1, —28672 s BE2: sw SvO =
FGa = 0 trust Ssp
FG9 = O [80000188] ac220200 sw $2, 512 (51)
FG10 = © [8000018c] 3cOl2000 1lui $1, —28672 s 893: sw Fa0 =
FG11 = 0 registers
FG12 = O [E80000190] ac240204 sw $4, 516(51)
FG13 = 0O [200001%4] 40126200 mfod 526, $13 s 05: mfcd SkC
FGi14a = O [80000198] 00lazZosS2z srl S4, S26, 2 s 9&: srl Sao
2. Simulation: These items will be used more frequently
L OtSpim
File = Simulator Registers Text Segment Data Segment Window Help
& Clear Registers <:j.1 @ = @
ﬁ Reinitialize Simulator b
F Data Text
FFP Re Run Parameters o
FIR P Run/Continue F5 | User Text Segment [0040000C
FCSE | Pause -1 001 8£fa240000 1w $4, 0D(529) s 183 1w
Etxﬁlj e 800004)] 27a50004 addin §5, 529, 4 s 184: ad
FEXE _ = 0] Z4a60004 addiun $6, 55, 4 s 185: ad
=i Single Step FI10 0041080 =11 S22, S4, 2 s 188: s1
Sinc Diisplay Symbols O0cZ23021 E-I.ddu 56, 56, 52) r 87: a:d
FGO 2100014] OcO00000 Jal O0x00000000 [main] s 188: Jja
ol | |2 Settings 800018] QO00QO00 nop s 189: no
Foz —u — 000lc] 3402000a ori $2, $0, 10 s 191: 131
FG3 = 0q [0040Q020] Q00000 0C syscall ;s 192 : s5YW%
FG4a = 0O
FCoS = g Fernel Text Segment [S8000000
FGE6 = 0O [E0000L180] 00014821l addo $27, 50, $1 s 50: mow
FGT = 0O [E0000184] 3cOl9000 1ui $1, —-28672 s BZ: sw
FGaE = 0 trust Ssp
FG9 = 0O [E0000188] ac220200 sw $2, 512(51)
FG1o = O [E000018c] 3cOlS000 lai 1, —-28B672 s 932: =W
FG11 = 0O registers
FG12 = 0O [20000150] ac240204 =w $4, 516(51)
FG13 = O [80000154] 40l1la6200 mfoD 526, 513 7 95: mfc
FGl4 = O [80000158] 00laZ2082 =rl $4, 526, 2 s SE: srl
FG15 = 0 [8000019c] 3084001f andi $4, $4, 31 s 97: and
M16 = CI recadodasaT ol TASOTFOOOA — L1 & A - FTMT - T

And also, we can change some setting from “Setting” item:

Ly tSpim
File Simulator Registers Text Segment Data Segment Window Help
3 Clear Registers i} [F] E% @
ﬁ Reinitialize Sirmulator
F Data Text
FP Res Fun Parameters
FIR P Run/Centinue F5 User Text Segment [00400000°
FCSE Pause 300000)] =£fa40000 1w S4, 0($29) s 183: 1w
FCCE m Stop 300004] ZTaS50004 addin $5, $29, 4 s 184: adc
FEXE _) BO00008] 24a60004 addin $6, 55, 4 s 185: adc
=i Single Step F10 B0000c] Q00410380 =11 $2, 5S4, =2 s g&6: =511
Sinec Display Symbols 300010] O00cZ23I021 E-lddt.l s6, S56, Sz) s 187: a:dc_
FGOD 300014] OcOOOOO0 Jal Ox00000000 [main] s 188: Jal
Foa |2 Settings j [sTsTsTaTalsls]s] nop s 189: nog
Fao = = 3402000a ori $2, S0, 10 s 191: 131
FOGS = 0 [OD0400020] OO0OO00000c syscall s 192: =s53:
Fc4a = 0O
FCS = 0 Fernel Text Segment [BO0000001
Fos = O [20000180] 00014821 addo $27, S0, S1 s 90: mows
FOQT = O [80000184] 3cOl9000 1umi $1, —28672 s 92: sw 4
FGe = 0 trust Ssp
FGa = 0O [80000188] ac220200 sw §$2, 512(§$1)
FG1io = 0O [E000018c] 3cOl9000 1ai $1, —28672 s B3: s5W £
FGi1i = O registers
FGl1z = O [20000190] acZ40204 sw S4, 516 (S1)
FG13 = O [20000194] 40la&6800 mfcO $26, S13 s 95: mfct
FGi4 = 0O [80000198] O0laZ0sS2 srl $4, 526, 2 s 9&: s5rl
FG15 = O [E000019c] 3084001f andi $4, S4, 31 s 97: anda
FGise = 0 r200001a01 34020004 ori S2. S0. 4 s 101: 13
The Setting window is divided into two section as follow:
[1 m = (71
Data | Text
Data L OtSpimn Settings ? =]
User data S [MIPS] [QtSpim]
[10000000a]
Simulator
User Stack L
[TEEELSEC] Length of Recent File list |4
[TEEEEfS7TO]
[TEEEEOE0] [Quiet
[TE£E£E£950]
[TE£EE££f2a0]
[FTEEE£SbL0O] Register Windows
[TE£EE£E£f9cO]
[7LL£E340] Font |Courier | Color |#aa55ff
[TEEEES=0]
[TEEEE£SED]
[FTEEEfa00] Background Color |#‘FFFFFF | |
[TE£E££fald] I
[TEEL£faz2d] H
[TEEEfa30] Text and Data Windows T
[TEEEffa40] E
[TEE£fas0] Font | courier | Color |#000000 «
[TE£E£Efac0] E
[TEELLfa70] I
[TEEEEaE0] Background Color |#‘FFFFFF | x
[TEEE£fa90] D
IrMrFTEEffaal 4

3. Resister menu: in this sub menu we can determine the type of register
contain such as binary, hex, decimal as follow:

L OtSpim
File Simulator Registers Text Segment Data Segment Window Help
= A Binary 3 T (7]
" Hex
FP Regs Data Text
Decimal

FP Regs Data
FIR = S80C “ | |User data segment [100000007]..[1
FOSR = [1lo0000000] .. [10o03ffff] 0O00000OC
FCCR =
FEXER =

User Stack [TE£fff96c] .. [B000000C

[TEEEfoEC] [s]sTs]sTs]sTs]s]
Single Precision [TEEEESTO] Qoooooo0 TEEEEfe]
FGOD = C [7TEEEFf2801] TEffffec TEEfffas
FG1 = C [TEEE£D90] TEEffekbd TELEEfekl
FGz = C [TEEE£Da0] TEEff=es5z2 TEEffe3E
FG3z = C [7TEEfFoL0] TEEEffcfo TEEffch:s
FG4 = C [TEEEEScO] TEEffcan TEEEffc2E
FGs = [TEEE£DA0] TEEffbE4 TEEEfb6c
FGe = C [TEEffo=0] TEEEffb0OS TEEffafe

4. Text Segment menu: this section is about Text part of workstation where
you can find your instructions as follow:

L OtSpim
File Simulator Registers Text Segment | Data Segment Window Help
| I_g H S ~ User Text H @
~ Kernel Text
FP Regs Int Reqg Text
FP Regs ~ Comments
FIR = 2300 k:f Instruction Value S0Scée6f Ef687479 2437336 433b3233 on\Pytho
FCSR -0 rTTTTTTOT 73555c3a 5CT737265 76696873 T0415c6l t VT sexrs\
FOOR = 0 [TEE££dc=0] 74614470 ©f4c5cel 5Scecele3d T2e3694d pData“LlLo
FEXR -0 [TEE££ddO] 666ET36E 69575074 TT6f646e 70704173 osoft\Wi
[TEf££fd=0] 3a433kB73 7T46cel5c 5c6l7265 30223331 2 :;C:%valt
[TEE££4f0)] 5c317073 65646fed ede%736c 65736151 splimode
Single Precision [TEf£f=00] 6269775c 6c613233 006de56ef 573d4534f "win3i2al
FGD = 0 [TEfff=10] 6fed46e69 4e5f7377 6e4f0054 65724465 indows N
FGl1 = 0 [TEEfff=20] 43346576 T73555c3a 5c737265 TEE96873 ve=0C:%Ts
FG2 = 0 [TEf£f=30] 6ed4f5cel 69724465 4008576 45424455 a\VO0OnebDri-
FG3 = 0 [TEfff=40] 4g4f5f52 4f52505f 53534543 3d453524f E_OF _ PRO
FGd = 0 [TEf£f=50] 4f4c0032 53424f47 45565245 Schc3dsz 2 .LOGONS
FGE = 0 [TEffff=c0] 41534544 2d4504f54 4a4b4250 00424135 DESETOP -

5. Data Segment menu: This section is about Data part of workstation where you
can find your Data, for example you can change the type of data (binary,
decimal, hex) as follow:

L (OtSpim
File Sirnulator Registers Text Segment Data Segrment Window Help
H d a8 ¢ # »

FP Regs Int Reas [L6%

« User Data N
= Lser Stack

" Kernel Data

FP Regs & X Data
FIR ~ o: Al [7TEEE Binary Ef 6£687479 2d37336e
FOSR _ [TEEE . = 3a 5cC737265 76696873
FOCR _ [TEEE 70 €f4cEScél ScEcElesl
FEXT - [TEEE! Decimal JEf 6€9575c74 776f646e
[TEEEEdE0] 32433873 746c€l5c ScE17265
[TEEEEAEO] 5c317073 €5646f6d 6dE3736c
Single Precision [TEE£E200] €269775c €c613233 006dESEf
FGD = 0 [TE£££210] 6f646269 4e5£7377 €e4£0054
FG1 = 0 [TE£££220] 43346576 73555c3a 5C737265

Note: And also, we have a useful tools menu which has some most frequently tools
such as Run, Open, Save, and etc.

L OtSpim

File Simulator Registers Text Segrment Data Segrment Window Help

[l & H S 2 # PMJEEQJ:|<::|
Text

FP Regs Int Regs [L6oK Data

FP Regs & X | Data

FIR = 5300 A || [FTEEEEdan] E0S5cE=6f 6f687479 2d3T7336e 433b3233

FOSE - q [TEEEfdRO] 73555c3a E5cT37265 TEEDEET3 T70415cEl

FCCR =0 [TEEEEdc0] 74614470 6f4cScEl ScEcEle3 T263694d

FEXE I [TEEEFddO] EEEfT736f E9575cT74 TTefEd4Ee TOTO4173
[TEEEEde0] 32433073 T46cElSc S5celT2E5 30223331
[TEEEEAED] Ec317073 65646f6d 6d69736c E573615E

Single Preciszion [TEEE£=00] E269775c 6c6l3233 006dE56f E573dA534f

5. First project (simulation):
Now, lets begin with first simulation, follow the steps one by one:

First of all, we should Set the Simulator:

In the first part of this experiment you will use SPIM to simulate
_a bare MIPS machine,

_ without allowing pseudo-codes, and
_no mapped I/O option.
_ without loading any trap-features.

In this mode, the assembler will not allow any pseudo-codes (i.e., li, mul, blt, ... etc.
and also any long offset fields in the lw and sw instructions) to be used in your
program. For the convenience in reading the register contents you may prefer to have
hexadecimal readings in the display windows. In the second part, you will use SPIM
in the more elaborated mode with the pseudo-code and trap-features loaded All of
these settings can be set on the settings form that is accessed starting from the drop-
down menu by simulator>settings.

Organization of a MIPS assembly program: The MIPS assembly programs are
text files with the extension "-.s" or - .asm™ . SPIM has no built-in editor-program
for writing the assembly source. You have to use your favorite, or any available text
editor such as NOTEPAD.EXE. The Notepad program of Windows 95/98 or NT is
located in:

Start > Programs > Accessories > Notepad

Type your MIPS assembly program (you have to leave an empty line at the end of
the program) and save it by specifying a filename for your program. Note that the
extension of the filename must be “.s” or ".asm". You should first click on the
PCSpim for Windows icon to start the PCSpim main window. Then load your
program by using the PCSpim’s menu File > Open. Use the opened browser to
choose the path and the assembly source file that you want to open. If there is any
syntax or structure error in your file, SPIM will give you a message indicating the
line number and the reason of the rejected line. You have to clean your program
from the syntax bugs and load it to SPIM.

After loading your assembly source, you are ready to run or trace it. Use Simulator

> Go (F5-key) or Simulator > single step (F10-key) of the main menu. The starting

8

address is automatically defined by the compiler according to the options your set-
up on the settings window. You can watch the contents of the registers using window
> Registers of the main menu. For an easy to observe page organization try the

window > tile option.

Experimental Work

A. Part-1
Following program multiplies two unsigned integers in the registers R8 by R9 and
writes the 32-bit product to register R10. In order to understand the operation of
your simulator program, type and execute the following MIPS assembly program

in non-pseudo-instruction mode.

.data 0x10000000

.text 0x00400000

main:

addi $8,%0,6

addi $9,$0,12

multiplication of $8 * $9 -> $10
add $2,$0,%8

add $10,%0,5%0

mulloop:

beq $2,$0,mulexit # if zero exit
addi $2,82,-1

add $10,%10,5%9

j mulloop

mulexit:

multiplication loop is over,

is the result in $10 correct?
sll $0,%0,0

syscall

1. You can put comments to the end of a line after a sharp sign (#).

2. 'You can start the single step execution applying the following items.

A. First set the PC (prog.counter) to the starting address of the program if SPIM
Is set correctly the starting address is 0x00400000. To set the value use the
key-sequence alt-s,v (or menu simulator>set value) to open the register-value
assignment dialog box. Enter PC and the starting address in hexadecimal
format.

B. Next, use the fn10 key to execute one instruction at each key-press. You can
also use the fn5 key to execute the complete progam at once. Correct the
starting address to 0x00400000 before clicking the OK button.

3. After syscal stops the execution save the log file with the filename
"expla.log"”. Open the log file by dragging it into the textpad and inspect the
text segment. Fill in the following machine code table according to

hexadecimal machine codes assigned by SPIM.

Reporting
Before the Lab-time is over, fill in the following report page as soon as you complete
the laboratory work, and submit it to your assistant. Your report is important for your

grading.

10

MName: Student Number:
Submitted to (Asst.): Date:sammyy [/

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

2019 Fall

CMPE 324 -Computer Architecture and Organization
EXPERIMENT 1 - Reporting Sheet

The observed binary machine codes of the instructions are:

Instruction opc s rt rd sa fn

addi $8,50,6

addi $9,60,12
add $2,80,58
add $10,50,$0

beq $2, §0, mulexit

addi $2,62,-1

add $10,$10,59

7 mulloop

sll §0,50,50

Grading:
Lab Performance:

Asst. Observations:

11

