
1

1

Computers and Programming

Chapter 01

CMPE-112 Programming Fundamentals

2

Lecture Plan

Hardware

Software

Programming Process

Problem Definition

Program Design

Program Coding

Compilation & Execution

Testing & Debugging

Program Documentation

C language overview

1

2

2

3

Hardware: main components

Five principal components in a computer are:

Arithmetic-logic unit (ALU)

Control unit (CU)

Memory

Input device (keyboard, mouse, floppy disk, etc)

Output device

Central Processing Unit (CPU) = ALU + CU

Input Device Memory Output Device

ALU CU

Central Processing Unit

4

Central Processing Unit

Arithmetic-Logic Unit (ALU)

Performs arithmetic operations

Conducts comparisons of data

Main components: adders, multipliers, counters and comparators

Control Unit (CU)

Fetches an instruction from the memory

Interprets the instruction

Loads the data into ALU

Executes the instruction

Stores the result back into memory

Directs and coordinates all other computer units

3

4

3

5

Memory

Stores

Instructions

Intermediate data and final results of instructions

Contains of cells (storage locations)

Cell has a label from 0 upwards – its address in the memory

Each location is called a word and consists of bits

Bit – the abbreviation for a binary digit – can contain either
a 0 or 1

Eight adjacent bits form a byte

A word usually consists of 8, 16 or 32 bits, i.e. 1, 2 or 4 bytes

One cell can hold only one piece of information

6

Input and Output Devices

Provide communication between users and computers

Interchange information between computers

Input devices store data into computer memory

Keyboard

Mouse

Light pen

Output devices retrieve results from computer memory

Video Monitor

Printer

Input/Output Devices

Hard and floppy disks

Tapes

Modems

5

6

4

7

Software

System software direct the internal operation of a computer

Control input and output devices

Manage storage areas within the computer

Application software solve user-oriented problems

Produce a student time-table

Calculate salary

Prepare a letter

Manage data bases

Programming languages
Machine language

Assembly language

High-level languages (BASIC, FORTRAN, Pascal, C)

8

Programming Process (I)

Problem definition

What must the program do?

What outputs are required and in what form?

What inputs are available and in what form?

Example: Find a maximum of two numbers
Input two numbers, compare them and print the
maximum value

Inputs and outputs are decimal numbers

Inputs are entered from the keyboard

Result is shown on the monitor

7

8

5

9

Programming Process (II)

Program Design involves creating an algorithm –
sequence of steps, by which a computer can
produce the required outputs from the available
inputs

Top-down design
The main problem is split into subtasks

Then each subtask is divided into simpler subtasks, etc.
unless it is clear how to solve all such subtasks

10

Programming Process (III)

Program Coding
means expressing the
algorithm developed
for solving a problem,
in a programming
language

Example of source
code is on the right

#include <stdio.h>

int main()

{

int number1, number2;

int maximum;

printf("Please, enter two numbers: ");

scanf("%d %d", &number1, &number2);

if (number1 >= number2)

maximum = number1;

else

maximum = number2;

printf("\nMaximum value is %1d\n\n“,
maximum);

return 0;

}

9

10

6

11

Programming Process (IV)

Program Compilation – translation of a program written in a
high-level programming language into machine language
instructions

Compilation step converts a source program into an
intermediate form, called object code

Linking step is necessary to combine this object code with
other code to produce an executable program

The advantage of this two-step approach:

Source of the large program may be split into more than one file

These files are worked on and compiled separately

Object code may be stored in libraries and used for many programs

Then they will be combined into one executable code

12

Programming Process (V)

Program Testing & Debugging

Initially, almost all programs may contain a few errors, or bugs

Testing is necessary to find out if the program produces a correct
result. Usually it is performed with sample data

Debugging is the process of locating and removing errors

Common types of errors

Compile-time errors arise from misuse of syntax rules (e.g. a ketword
is misspelled). They are detected by compilers

Run-time, or execution-time errors are revealed when the program is
executed (for instance, division by zero)

Logical errors are NOT detected automatically. They arise in the
design of the algorithm. Tracing and/or dumping is necessary to
detect and remove them

11

12

7

13

Programming Process (VI)

Program Documentation involves describing the program in
details so that it can be used and/or modified much later
after it is created

Some tips for documenting a program

Use a meaningful name for variables and constants

S = D / T;

Speed = Distance / Time;

Comment all pieces of code. Comments may include

Programmer name

Name of source file

Dates of creating and modifying the source; its version

Description of every input and output variable, etc

14

C language overview

C is a general-purpose programming languages that was originally
designed by Dennis Rithcie of Bell Laboratories and implemented there
on a PDP-11 in 1972. It was first used as the system languages for the
UNIX operating system

Ken Tomson, the developer of UNIX, had been using both an assembler
and a language named B to produce initial version of UNIX in 1970. C
was invented to overcome the limitations of B

By the early 1980s, the original C language had evolved into what is now
known as traditional C. In late 1980s , the American National
Standards Institute(ANSI) Committee created draft standards for
what is known as ANSI C or standard C

Today, ANSI C is mature, general-purpose programming language that is
widely used available on many machines and in many operating systems

13

14

8

15

Why C ?

C is a small language
It has fewer reserved words (keywords), powerful data types and control
structures

C is native language of Unix
Unix is major interactive OS on workstations, servers, mainframes and PC. Much
of MS-DOS and OS/2, Windowing packages, database programs, graphics libraries
are written in C

C is portable
Code written on one machine can be easily moved to another

C is terse
C has powerful set of operators; some of these operators allow the programmer to
access the machine at the bit level

C is modular
The heart of effective problem solving is problem decomposition. Taking a
problem and breaking it into small, manageable pieces of code known as functions
or modules, is a way to make the programming process easy

C is basis for C++ and Java

15

