
1

1

Sequential Structure

Chapter 02

CMPE-112 Programming Fundamentals

2

Lecture Plan

Some examples of
programs in C

Main elements
Character set

Data types

Classes of data

Constants

Operators

Expressions

Assignments

Function printf()

Function scanf()

Sample programs

Automatic type conversions

Automatic unary conversions

Automatic binary conversions

Rules for binary conversions

Explicit Type Conversions

Type Conversion in Assignments

1

2

2

3

First Example (I)

/* Ch_02_1.C -- Chapter 02. First illustration program */

/* It checks if a point belongs to a line 16x-2y=10 */

#include <stdio.h>

int main()

{

int x, y, z;

printf("\n\nPlease, enter coordinates of a point (x y): ");

scanf("%d %d", &x, &y);

z = 16 * x - 2 * y;

if (z == 10)

printf("\nThe point (%1d, %1d) is located on the line.\n“, x, y);

else

printf("\nThe point (%1d, %1d) is not located on the line.\n“, x, y);

return 0;

}

4

First Example (II)

Please, enter coordinates of a point (x y): 2 4

The point (2, 4) is not located on the line.

Please, enter coordinates of a point (x y): 2 11

The point (2, 11) is located on the line.

3

4

3

5

Third Example

/* Ch_02_3.C -- Chapter 02. Third illustration program */

/* It checks if a point belongs to a line COEF_Ax-COEF_By=COEF_C */

/* where COEF_A, COEF_B, COEF_C are constant values */

#include <stdio.h>

#define COEF_A 16

#define COEF_B 2

#define COEF_C 10

int main()

{

int x, y, z;

printf("\n\nPlease, enter coordinates of a point (x y): ");

scanf("%d %d", &x, &y);

z = COEF_A * x - COEF_B * y;

if (z == COEF_C)

printf("\nThe point (%1d, %1d) is located on the line.\n“, x, y);

else

printf("\nThe point (%1d, %1d) is not located on the line.\n“, x, y);

return 0;

}

6

Fourth Example

/* Ch_02_4.C -- Chapter 02. Fourth illustration program */

/* It checks if 3 points belong to a line COEF_Ax-COEF_By=COEF_C */

/* where COEF_A, COEF_B, COEF_C are constant values */

#include <stdio.h>

#define COEF_A 16

#define COEF_B 2

#define COEF_C 10

int main()

{

int x, y, z;

int i;

for (i=0; i<3; i++) {

printf("\n\nPlease, enter coordinates of a point (x y): ");

scanf("%d %d", &x, &y);

z = COEF_A * x - COEF_B * y;

if (z == COEF_C)

printf("\nThe point (%1d, %1d) is located on the line.\n“, x, y);

else

printf("\nThe point (%1d, %1d) is not located on the line.\n“, x, y);

}

return 0;

}

5

6

4

7

Fifth Example

/* Ch_02_5.C -- Chapter 02. Fifth illustration program */

#include <stdio.h>

#include <math.h>

int main()

{

int number;

double square_root;

printf("Please, enter a number: ");

scanf("%d", &number);

square_root = sqrt(number);

printf("\nSqare root of %1d is %4.3f\n\n", number, square_root);

return 0;

}

8

Data Types

Type Length Range

unsigned char 8 bits 0 to 255

char 8 bits -128 to 127

enum 16 bits -32,768 to 32,767

unsigned int 16 bits 0 to 65,535

short int 16 bits -32,768 to 32,767

int 16 bits -32,768 to 32,767

unsigned long 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to 2,147,483,647

float 32 bits 3.4 x 10-38 to 3.4 x 10+38

double 64 bits 1.7 x 10-308 to 1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to 1.1 x 10+4932

near (pointer) 16 bits not applicable

far (pointer) 32 bits not applicable

7

8

5

9

Classes of Data (I)

Variables
Must be declared before they are used

Declaration consists of a type name followed by a list of one or more
variables separated by commas

char cherry, apricot;

int mint = 7;

float swim;

Names must obey certain rules:

Must begin with a letter or underscore

May be a combination of letters, digits and underscores

Whitespace characters are not allowed within a name

Usually written in lowercase letters

Not more than 31 significant characters

Must not be keywords

A variable name is its identifier

10

Classes of Data (II)

Constants

Their values do not change during program execution

Must be declared before use

Declaration looks as follows:

#define LUN 1275*37

#define RIS 0xD4

#define BO 037

#define PI 3.1415

#define CR ‘\n’

Names of constants must obey almost the same rules as those of
variables, except:

Usually written in uppercase letters

A constant name is its identifier

Note:

#define is a preprocessor directive

9

10

6

11

Operators (I)

An operator is a symbol that causes specific mathematical or
logical manipulations to be performed

There are a number of arithmetic operators:
binary operators

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

Remainder (%) etc

unary operators
Unary plus (+)

Unary minus (-)

Binary operators require two operands

Unary operators require one operand

12

Operators (II)

Examples

12 + 9 = 21

12 – 9 = 3

12 * 9 = 108

12 / 9 = 1

12 % 9 = 3

12. + 9. = 21.

12 . – 9. = 3.

12. * 9. = 108.

12. / 9. = 1.33

Precedence of arithmetic operators

Operator Type Associativity

+ - Unary Right to left

* / % Binary Left to right

+ - Binary Left to right

11

12

7

13

Expressions

A combination of constants and variables together with the
operators is referred to as an expression

Constants and variables by themselves are also expressions

An expression that involves only constants is called a
constant expression

Every expression has a value

Evaluation of an expression is performed in accordance with
the precedence and parenthesis rule

14

Examples (I)

Expression Equivalent
Expression

Value

2 – 3 + 4

2 * 3 – 4

2 – 3 / 4

2 + 3 % 4

2 * 3 % 4

2 / 3 * 4

2 % 3 / 4

-2 + 3

2 * -3

-2 * -3

13

14

8

15

Correct answers (I)

Expression Equivalent
Expression

Value

2 – 3 + 4 (2 – 3) + 4 3

2 * 3 – 4 (2 * 3) – 4 2

2 – 3 / 4 2 – (3 / 4) 2

2 + 3 % 4 2 + (3 % 4) 5

2 * 3 % 4 (2 * 3) % 4 2

2 / 3 * 4 (2 / 3) * 4 0

2 % 3 / 4 (2 % 3) / 4 0

-2 + 3 (- 2) + 3 1

2 * -3 2 * (- 3) -6

-2 * -3 (- 2) * (- 3) 6

16

Assignments

An assignment expression is of the form:

variable = expression

An assignment expression when followed by a semicolon becomes an
assignment statement:

variable = expression;

Statements

x = y;

and

y = x;

produce very different results.

The precedence of the assignment operator (=) is lower than that of the
arithmetic operators, so

sum = sum + item;

is equivalent to

sum = (sum + item);

15

16

9

17

Increment & Decrement

Increment operator (+ +) is a unary one. It increases the
value of a variable by 1

Decrement operator (– –) is also a unary one. It decreases
the value of a variable by 1

These operators can be used both as prefix, where the
operator occurs before the operand, and postfix, where the
operator occurs after the operand

++variable

variable++

- -variable

variable- -

In the prefix form the value is incremented or decremented
by 1 before it is used; in the postfix form – after that

18

Examples (II)

Assignment Before values After values

k = i++; i = 1

k = ++i; i = 1

k = i--; i = 1

k = --i; i = 1

k = 5 - i++; i = 1

k = 5 - ++i; i = 1

k = 5 + i--; i = 1

k = 5 + --i; i = 1

k = i++ + --j; i = 1, j = 5

k = ++i - j--; i = 1, j = 5

17

18

10

19

Correct answers (II)

Assignment Before values After values

k = i++; i = 1 k = 1, i = 2

k = ++i; i = 1 k = 2, i = 2

k = i--; i = 1 k = 1, i = 0

k = --i; i = 1 k = 0, i = 0

k = 5 - i++; i = 1 k = 5 - 1 = 4, i = 2

k = 5 - ++i; i = 1 k = 5 - 2 = 3, i = 2

k = 5 + i--; i = 1 k = 5 + 1 = 6, i = 0

k = 5 + --i; i = 1 k = 5 + 0 = 5, i = 0

k = i++ + --j; i = 1, j = 5 k = 5, i = 2, j = 4

k = ++i - j--; i = 1, j = 5 k = -3, i = 2, j = 4

20

+= -= *= /= %=

<<= >>= &= |= ^=

Compound assignments

There are 10 compound assign operators in C language:

They are used for the compression of assignment statements

The following statements are equivalent:

variable op= expression;

and

variable = variable op expression;

where op= denotes a compound assignment operator

19

20

11

21

Examples & Answers (III)

int i = 2, j = 1, k = 3;

Assignment Equivalent statement After values

k -= i;

k += i - 1;

k /= i + 1;

k *= i - j;

k %= i * j;

Assignment Equivalent statement After values

k -= i; k = k - i; k = 1

k += i - 1; k = k + (i - 1); k = 4

k /= i + 1; k = k / (i + 1); k = 1

k *= i - j; k = k * (i - j); k = 3

k %= i * j; k = k % (i * j); k = 1

22

Nested Assignments

Multiple assignments in one statement are called nested.

Assignment operators are right-associative; the following statement:

i = j = k = 0;

is interpreted as

i = (j = (k = 0));

Similarly, the statement

i += j = k;

is interpreted as

i += (j = k);

and the statement

i = j += k;

as

i = (j += k);

21

22

12

23

Function printf()

A call to printf is of the form

printf(control_string, arg1, arg2, …);

The control string governs the conversion, formatting, and
printing of the arguments of printf. So, the statement

printf(“Just a prompt for the user”);

will produce the following result

Just a prompt for the user

It may consist of ordinary characters that are reproduced
unchanged on the standard output (usually, monitor)

The control string may also include conversion
specifications that control the conversion of the arguments
arg1, arg2, etc., before they are printed

24

printf(): Conversion specifications

Each conversion specification consists of the character %
followed by optional minimum field width specification and
precision specifications as well as a required conversion
control character

Control
character

Effect

d, i Argument of int type is converted into decimal notation [-]ddd

f float or double type → [-]ddd.dddd

e float or double type → [-]d.dddddde[]dd

c Argument is taken to be a single character

s Argument is taken to be a string

23

24

13

25

printf(): Examples

int i = 5;
float j = 314.15;

char cr = ‘$’;

Statement Result

printf(“%5i”, i); _ _ _ _ 5

printf(“%6.1f”, j); _ 3 1 4 . 1

printf(“%f”, j); 3 1 4 . 1 4 9 9 9 4

printf(“%.1e”, j); 3 . 1 e + 0 2

printf(“%10.2e”, j); _ _ 3 . 1 4 e + 0 2

printf(“%c”, cr); $

26

Function scanf()

A call to scanf is of the form

scanf(control_string, arg1, arg2, …);

The control string governs the conversion, formatting,
and printing of the arguments of scanf

Each of the arguments arg1, arg2, etc., must be a
pointer to the variable which the result is stored. So, the
statement

scanf(“%d”, &var);

is a correct one, while

scanf(“%d”, var);

is not correct

25

26

14

27

scanf(): Control string

The control string contains conversion specifications
according to which the characters from the standard input
are interpreted and the results are assigned to the successive
arguments arg1, arg2, etc.

The scanf() function

reads one data item from the input, skipping whitespaces (and
newlines) to find the next data item, and

returns as function value the total number of arguments successfully
read; it returns EOF when the end of input is reached

Each conversion specification consists of the character %
followed by a conversion control character

Whitespaces separating conversion specifications are ignored

28

scanf(): Conversion specifications

Control
character

Effect

d, i A decimal value is expected in the input. The corresponding
argument should be a pointer to an int

f, e A floating-point number is expected in the input. The
corresponding argument should be a pointer to a float. The
input could be in standard decimal form or in the exponential
form

c A single character is expected in the input. The corresponding
argument should be a pointer to a char. Only in this case, the
normal skip over whitespaces in input is suppressed

27

28

15

29

scanf(): Examples

Given the declarations

int i;

float f1, f2;

char c1, c2;

and the input data

10 1.0e1 10.0pc

the statement

scanf(“%d %f %e %c %c”, &i, &f1, &f2, &c1, &c2);

results in

i = 10 c1 = p

f1 = 10.000000 c2 = c

f2 = 10.000000

30

Sixth Example

/* Ch_02_6.C -- Chapter 02. Sixth illustration program */

/* This program calculates the sum of digits for a 3-digit number */

#include <stdio.h>

int main()

{

int num;

int sum = 0; /* Initial value for sum */

printf("\n\nPlease, enter a number: "); /* Entering the number */

scanf("%3i", &num);

sum += num % 10; /* Add the lowest digit to the sum */

num /= 10; /* Leave a 2-digit number */

sum = sum + num % 10 + num / 10; /* Add these two digits to the sum */

printf("\nThe sum of its digits is: %3d", sum); /* Printing the result */

return 0;

}

29

30

16

31

Seventh Example

/* Ch_02_7.C -- Chapter 02. Seventh illustration program */

/* This program is convert the presentation form of a value: */

/* A decimal value is printed out in octal and hexadecimal forms */

#include <stdio.h>

int main()

{

int num;

/* Enter a decimal value */

printf("\n\nPlease, enter a decimal value: ");

scanf("%i", &num);

/* Printing ... */

printf("\nThis value in the decimal form:\t%7i", num);

printf("\nThe same value in octal form:\t%7o", num);

printf("\nThe same value in xehadecimal form: %3X", num);

return 0;

}

32

Automatic Type Conversions

An expression in C may contain variables and constants of
different types

There are rules for evaluating such expressions

ANSI C performs arithmetic operations with just 6 data types:

int,

unsigned int,

long int

float,

double,

long double

Automatic Unary Conversions: any operand of the type char
or short is implicitly converted to int before the operation

31

32

17

33

Automatic Binary Conversions

Apply to both operands of the binary operators

Carried out after automatic unary conversions

General Idea: the “lower”-type operand is promoted to the
“higher” type before the operation proceeds

The result is of the “higher” type

If there’s no “unsigned” operands, the conversion rules are
summarized in the diagram as follows:

char

short

int long float double long double

34

Rules for Binary Conversions (I)

If one operand is long double and the other is not, the latter
is converted to long double, and the result is long double;

otherwise, if one operand is double and the other is not, the
latter is converted to double, and the result is double;

otherwise, if one operand is float and the other is not, the
latter is converted to float, and the result is float;

otherwise, if one operand is unsigned long int and the other
is not, the latter is converted to unsigned long int, and the
result is unsigned long int;

33

34

18

35

Rules for Binary Conversions (II)

otherwise, if one operand is long int and the other is
unsigned int, then

if a long int can represent all values of an unsigned int, the latter is
converted to long int, and the result is long int;

if not, both are converted to unsigned long int, and the result is
unsigned long int;

otherwise, if one operand is long int and the other is not, the
latter is converted to long int, and the result is long int;

otherwise, if one operand is unsigned int and the other is
not, the latter is converted to unsigned int, and the result is
unsigned int;

otherwise, both operands must be int, and the result is int

36

Example

Let’s evaluate the following expression:

(c / u - l) + s * f
where the types of c, u, l, s and f are char, unsigned int, long, short and float

The table below summarizes all the automatic conversions
that take place during the evaluation:

Expression Conversion Operand1 Operand2 Result

c unary char int

c / u binary int unsigned int unsigned int

c / u - l binary unsigned int long int long int

s unary short int int

s * f binary int float float

(c/u-l)+s*f binary long int float float

35

36

19

37

Explicit Type Conversion

Necessary to convert the type of an operand to a desirable
one which is different from the result of automatic conversion

Performed by a special construct called cast. The general
form of a cast is

(cast-type) expression

Example:

(int) 12.8 results in 12
which is an integer value

A cast is a unary operator, so

(int) 12.8 * 3.1 results in 12 * 3.1 = 37.2

(int) (12.8 * 3.1) results in (int) 39.68 = 39

38

Type Conversion in Assignments

Occurs when the type of a resultant variable is different of
that of an assignment expression

Automatically, the value of the expression on the right side of
the assignment operator is converted to the type of the
variable on its left side

The conversion of a lower order type (say, int) to a higher
order (e.g. float) only changes the form, in which the value in
presented

The conversion of a higher order type to a lower order may
cause truncation and loss of information

37

38

20

39

Example I

Determine the value of the following C expression:

- (2 * (- 3 / (double) (4 % 10))) - (- 6 + 4)

1. Parenthesis rule is applied first, and the result is

- (2 * (- 3 / (double) 4)) - (- 6 + 4)

2. The cast forces conversion of 4 into double type, so the division is

no longer an integer division, and the result is

- (2 * -0.75) - (- 6 + 4)

3. Further evaluation gives

- -1.5 - -2

1.5 + 2 = 3.5

40

Example II

Determine the values of x, y and z in the following fragment in C:

int x, y, z;

float f;

x = 5;

x /= y = z = 1 + 1.5;

Arithmetic operator has higher precedence than assignments, so the

equivalent expressions are as follows:

x /= (y = (z = (1 + 1.5)))

x /= (y = (z = 2.5)) → z = 2

x /= (y = 2) → y = 2.0

x /= 2.0 → x = 2

39

40

