
1

1

Selective Structure

Chapter 03

CMPE-112 Programming Fundamentals

2

General Idea

Relational Operators

Logical Operators

Logical AND operator

Logical OR operator

Logical NOT operator

Precedence and Associativity

Conditional Expression Operator

Conditional Statements

Statement if

Statement if - else

Statement switch

Lecture Plan

1

2

2

3

General Idea

Selective Structure includes a test for a condition followed
by alternative paths that the program can follow. The
program runs along one or the other path depending upon
the result of the test for the condition

Entry

Condition

Statement_1;

true false

Statement_2;

Exit

4

Relational Operators (I)

C provide 6 relational operators for comparing values of two
expressions

Relational Operator Name Relational Expression

< Less than exp1 < exp2

<= Less than or equal to exp1 <= exp2

> Greater than exp1 > exp2

>= Greater than or equal to exp1 >= exp2

== Equal to exp1 == exp2

!= Not equal to exp1 != exp2

3

4

3

5

Relational Operators (II)

Relational operators can be applied to operands - of any
arithmetic type

The result of comparison of two expressions is true if the
condition is satisfied and false otherwise

There is no special logical data type in C. The value of a
relational expression is of type int :

15 > 10 has the value 1 (true)

15 < 10 has the value 0 (false)

Assignment operator “=” vs. equal to operator “==”

if (x == 10) printf(“equal to operator”);

if (x = 10) printf(“assignment”);

In the latter statement, printing will always be performed

6

Precedence and Associativity

The precedence and associativity of the relational operators
with respect to arithmetic and assignment operators:

Operators Type Associativity

+ – ++ – – Unary Right to left

* / % Binary Left to right

+ – Binary Left to right

< <= > >= Binary Left to right

== != Binary Left to right

= *= /= %= += –= Binary Left to right

5

6

4

7

Examples (I)

int i = 3, j = 2, k = 1;

Expression Equivalent Expression Value

i > j > k

i >= j >= k

i != j != k

k < i != k < j

i - k == j * k

i > j == i + k > j + k

i += j != k

i = k != j < k * j

8

Correct Answers (I)

int i = 3, j = 2, k = 1;

Expression Equivalent Expression Value

i > j > k (i > j) > k false

i >= j >= k (i >= j) >= k true

i != j != k (i != j) != k false

k < i != k < j (k < i) != (k < j) false

i - k == j * k (i - k) == (j * k) true

i > j == i + k > j + k (i > j) == ((i + k) > (j + k)) true

i += j != k i += (j != k) 4

i = k != j < k * j i = (k != (j < (k * j))) 1

7

8

5

9

Logical Operators

In C there are three logical operators:

Logical AND (&&) - binary

Logical OR (||) - binary

Logical NOT (!) - unary

The operands may be of any arithmetic type while
the result is always int

The value of a logical expression is either 1 (true)
or 0 (false)

10

Logical AND

The general form is

exp1 && exp2

Such expression is evaluated from by first evaluating the left
expression exp1. If its value is 0, the value of exp2 is not
evaluated at all, and the result is false

exp1 exp2 exp1 && exp2

true true true

true false false

false true false

false false false

9

10

6

11

Logical OR

The general form is

exp1 || exp2

Such expression is evaluated from by first evaluating the left
expression exp1. If its value is 1, the value of exp2 is not
evaluated at all, and the result is true

exp1 exp2 exp1 || exp2

true true true

true false true

false true true

false false false

12

Logical NOT

The general form is

! exp

Such expression is evaluated from by first evaluating the left
expression. If its value is 1, the result is false, otherwise the
result is true

exp ! exp

true false

false true

11

12

7

13

Precedence and Associativity

The precedence and associativity of the logical operators with
respect to the others:

Operators Type Associativity

+ – ++ – – ! Unary Right to left

* / % Binary Left to right

+ – Binary Left to right

< <= > >= Binary Left to right

== != Binary Left to right

&& Binary Left to right

|| Binary Left to right

= *= /= %= += –= Binary Left to right

14

Examples (II)

int i = 3, j = 2, k = 1;

Expression Equivalent Expression Value

!! k

!i == !j

k != ! k * k

i > j && j > k

i != j && j != k

i - j - k || k == i / j

i < j || k < i && j < k

13

14

8

15

Correct Answers (II)

int i = 3, j = 2, k = 1;

Expression Equivalent Expression Value

! ! k ! (! k) true

! i == ! j (! i) == (! j) true

k != ! k * k k != ((! k) * k) true

i > j && j > k (i > j) && (j > k) true

i != j && j != k (i != j) && (j != k) true

i - j - k || k == i / j ((i - j) - k) || (k == (i / j)) true

i < j || k < i && j < k (i < j) || ((k < i) && (j < k)) false

16

Conditional Expression Operator

This operator has three arguments

expression_1 ? expression_2 : expression_3

The conditional expression is evaluated by first evaluating the
expression_1. If the resultant value is nonzero (true), then
the expression_2 is evaluated and its value become the
overall result. Otherwise, the expression_3 is evaluated, and
its value becomes the result

This operator is most often used in assignment statements.
For example,

max = x > y ? x : y;

finds the maximum of two values

15

16

9

17

Statement if

The general form

if (expression)

statement

Entry

Condition

Statement;

true

ExitExample

if (number < 0)

number = -number;

printf(“Positive value is %d”, number);

18

Sample Program (I)

#include <stdio.h>

int main()

{

int v1, v2, max;

printf(“\nEnter two values: ”); /* Enter two numbers */

scanf(“%i %d”, &v1, &v2);

max = v1; /* Assign the first value as maximum */

if (v2 > v1) max = v2; /* Check is the second number is greater */

printf(“\nMaximum is: %3d\n”, max); /* Print the result */

return 0;

}

17

18

10

19

Statement if-else

The general form

if (expression)

statement_1

else

statement_2

Example

if (number % 2 == 0)

printf(“Value of %d is an even number” , number);

else

printf(“Value of %d is an odd number”, number);

Entry

Expression

Statement_1;

true false

Statement_2;

Exit

20

Sample Program (II)

#include <stdio.h>

int main()

{

int v1, v2, max;

printf(“\nEnter two values: ”); /* Enter two numbers */

scanf(“%i %d”, &v1, &v2);

if (v2 > v1) max = v2; /* Check is the second number is greater */

else max = v1;

printf(“\nMaximum is: %3d\n”, max); /* Print the result */

return 0;

}

19

20

11

21

Within if-block and/or else-block there may be another
if-else statement. Then the general form of a nested
conditional statement is as follows:

if (expression_1)

if (condition_1)

statement_1

else

statement_2

else

if (condition_2)

statement_3

else

statement_4

Nested Conditional Statements

Neither statement_1 nor
statement_2 is executed
unless expression_1 is true

Neither statement_3 nor
statement_4 is executed
unless expression_1 is false

22

Sample Program (III)

#include <stdio.h>

int main()

{

int v1, v2;

printf(“\nEnter two values: ”); /* Enter two numbers */

scanf(“%i %d”, &v1, &v2);

/* Print the result */

if (v1 > v2) printf(“\n%1d is greater than %1d\n”, v1, v2);

else

if (v1 < v2) printf(“\n%1d is less than %1d\n”, v1, v2);

else printf(“\n%1d is equal to %1d\n”, v1, v2);

return 0;

}

21

22

12

23

When conditional statements are nested, else is associated
with the closest previous else-less if :

Dangling else Problem

if (expression_1)

{

if (condition_1)

statement_1

}

else

statement_2

if (expression_1)

if (condition_1)

statement_1

else

statement_2

if (expression_1)

if (condition_1)

statement_1

else

statement_2

Equivalent There is no ; here

24

Often several expressions with if-else statements can be
transformed into one statement using logical operators

Equivalent Transformation

if (v1 > v2)

if (v2 > 10)

printf(“%d is greater than 10”, v1);

can be transformed like that

if ((v1 > v2) && (v2 > 10))

printf(“%d is greater than 10”, v1);

i = 0;

if (v1 > 10) i++;

if (v2 > 10) i++;

if (i > 0)

printf(“%d or %d > 10”, v1, v2);

can be transformed like that

if ((v1 > 10) || (v2 > 10))

printf(“%d or %d > 10”, v1, v2);

23

24

13

25

Statement switch

In case of constant multi-way decision C provides a special
switch statement. Its general form is as follows:

switch (expression)

{

case value_1 :

statement_1

break;

:

case value_n :

statement_n

break;

default :

statement_x

break;

}

if (expression = = value_1)

statement_1

else if (expression = = value_2)

statement_2

:

else if (expression = = value_n)

statement_n

else

statement_x

Equivalent

26

Sample Program (IV)

#include <stdio.h>

int main()

{

char c1;

int v1, v2;

printf(“\nEnter the expression: ”); /* Enter the expression */

scanf(“%i %c %d”, &v1, &c1, &v2);

switch (c1) { /* Perform the operation requested */

case ‘+’ : printf(“\n%1d plus %1d is %1d\n”, v1, v2, v1+v2); break;

case ‘–’ : printf(“\n%1d minus %1d is %1d\n”, v1, v2, v1–v2); break;

default : printf(“\nWrong operation!\n”); break;

}

return 0;

}

25

26

