
24-May-21

1

Chapter 22: Input/Output

File Pointers

• Accessing a stream is done through a file pointer,

which has type FILE *.

• The FILE type is declared in <stdio.h>.

• Certain streams are represented by file pointers

with standard names.

• Additional file pointers can be declared as needed:

FILE *fp1, *fp2;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
1

Chapter 22: Input/Output

Text Files versus Binary Files

• <stdio.h> supports two kinds of files: text and

binary.

• The bytes in a text file represent characters,

allowing humans to examine or edit the file.

– The source code for a C program is stored in a text file.

• In a binary file, bytes don’t necessarily represent

characters.

– Groups of bytes might represent other types of data, such

as integers and floating-point numbers.

– An executable C program is stored in a binary file.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
2

1

2

24-May-21

2

Chapter 22: Input/Output

Text Files versus Binary Files

• Text files have two characteristics that binary files

don’t possess.

• Text files are divided into lines. Each line in a text

file normally ends with one or two special

characters.

– Windows: carriage-return character ('\x0d')

followed by line-feed character ('\x0a')

– UNIX and newer versions of Mac OS: line-feed

character

– Older versions of Mac OS: carriage-return character

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
3

Chapter 22: Input/Output

Text Files versus Binary Files

• Text files may contain a special “end-of-file”

marker.

– In Windows, the marker is '\x1a' (Ctrl-Z), but it is

not required.

– Most other operating systems, including UNIX, have no

special end-of-file character.

• In a binary file, there are no end-of-line or end-of-

file markers; all bytes are treated equally.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
4

3

4

24-May-21

3

Chapter 22: Input/Output

Text Files versus Binary Files

• When data is written to a file, it can be stored in

text form or in binary form.

• One way to store the number 32767 in a file would

be to write it in text form as the characters 3, 2, 7,

6, and 7:

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
5

Chapter 22: Input/Output

Text Files versus Binary Files

• The other option is to store the number in binary,

which would take as few as two bytes:

• Storing numbers in binary can often save space.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
6

5

6

24-May-21

4

Chapter 22: Input/Output

Opening a File

• Opening a file for use as a stream requires a call of

the fopen function.

• Prototype for fopen:

FILE *fopen(const char * filename,

const char * mode);

• filename is the name of the file to be opened.

– This argument may include information about the file’s

location, such as a drive specifier or path.

• mode is a “mode string” that specifies what

operations we intend to perform on the file.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
7

Chapter 22: Input/Output

Opening a File

• fopen returns a file pointer that the program can

(and usually will) save in a variable:

fp = fopen("in.dat", "r");

/* opens in.dat for reading */

• When it can’t open a file, fopen returns a null

pointer.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
8

7

8

24-May-21

5

Chapter 22: Input/Output

Modes

• Factors that determine which mode string to pass

to fopen:

– Which operations are to be performed on the file

– Whether the file contains text or binary data

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
9

Chapter 22: Input/Output

Modes

• Mode strings for text files:

String Meaning

"r" Open for reading

"w" Open for writing (file need not exist)

"a" Open for appending (file need not exist)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
10

9

10

24-May-21

6

Chapter 22: Input/Output

Modes

• Note that there are different mode strings for

writing data and appending data.

• When data is written to a file, it normally

overwrites what was previously there.

• When a file is opened for appending, data written

to the file is added at the end.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
11

Chapter 22: Input/Output

Closing a File

• The fclose function allows a program to close a

file that it’s no longer using.

• The argument to fclose must be a file pointer

obtained from a call of fopen or freopen.

• fclose returns zero if the file was closed

successfully.

• Otherwise, it returns the error code EOF (a macro

defined in <stdio.h>).

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
12

11

12

24-May-21

7

Chapter 22: Input/Output

Closing a File

• The outline of a program that opens a file for reading:

#include <stdio.h>

#include <stdlib.h>

#define FILE_NAME "example.dat"

int main(void)

{
FILE *fp;

fp = fopen(FILE_NAME, "r");

if (fp == NULL) {

printf("Can't open %s\n", FILE_NAME);

exit(EXIT_FAILURE);
}

…

fclose(fp);

return 0;
}

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
13

Chapter 22: Input/Output

Closing a File

• It’s not unusual to see the call of fopen

combined with the declaration of fp:

FILE *fp = fopen(FILE_NAME, "r");

or the test against NULL:

if ((fp = fopen(FILE_NAME, "r")) == NULL) …

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
14

13

14

24-May-21

8

Chapter 22: Input/Output

The …printf/fprintf Functions

• printf always writes to stdout, whereas

fprintf writes to the stream indicated by its

first argument:

printf("Total: %d\n", total);

/* writes to stdout */

fprintf(fp, "Total: %d\n", total);

/* writes to fp */

• A call of printf is equivalent to a call of

fprintf with stdout as the first argument.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
15

Chapter 22: Input/Output

The …scanf/fscanf Functions

• scanf always reads from stdin, whereas

fscanf reads from the stream indicated by its

first argument:

scanf("%d%d", &i, &j);

/* reads from stdin */

fscanf(fp, "%d%d", &i, &j);

/* reads from fp */

• A call of scanf is equivalent to a call of

fscanf with stdin as the first argument.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

15

16

24-May-21

9

Chapter 22: Input/Output

Other I/O Functions

• putchar writes one character to the stdout

stream:

putchar(ch); /* writes ch to stdout */

• fputc and putc write a character to an arbitrary

stream:

fputc(ch, fp); /* writes ch to fp */

putc(ch, fp); /* writes ch to fp */

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
17

Chapter 22: Input/Output

Other I/O Functions

• getchar reads a character from stdin:

ch = getchar();

• fgetc and getc read a character from an arbitrary

stream:

ch = fgetc(fp);

ch = getc(fp);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
18

17

18

24-May-21

10

Chapter 22: Input/Output

Other I/O Functions
• The puts function writes a string of characters to

stdout:

puts("Hi, there!"); /* writes to
stdout */

• After it writes the characters in the string, puts always

adds a new-line character.

• fputs is a more general version of puts.

• Its second argument indicates the stream to which the

output should be written:

fputs("Hi, there!", fp); /* writes to
fp */

• Unlike puts, the fputs function doesn’t write a new-
line character unless one is present in the string.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
19

Chapter 22: Input/Output

Other I/O Functions

• The gets function reads a line of input from

stdin:

gets(str); /* reads a line from stdin */

• gets reads characters one by one, storing them in

the array pointed to by str, until it reads a new-

line character (which it discards).

• fgets is a more general version of gets that can

read from any stream.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
20

19

20

24-May-21

11

Chapter 22: Input/Output

Other I/O Functions

• A call of fgets that reads a line into a character

array named str:

fgets(str, sizeof(str), fp);

• fgets will read characters until it reaches the

first new-line character or sizeof(str) – 1

characters have been read.

• If it reads the new-line character, fgets stores it

along with the other characters.

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
21

Chapter 22: Input/Output

Other I/O Functions

• fgets should be used instead of gets in most

situations.

• gets is safe to use only when the string being

read is guaranteed to fit into the array.

• When there’s no guarantee (and there usually

isn’t), it’s much safer to use fgets.

• fgets will read from the standard input stream if

passed stdin as its third argument:

fgets(str, sizeof(str), stdin);

Copyright © 2008 W. W. Norton & Company.

All rights reserved.
22

21

22

