

- Suppose a distribution company is considering purchasing a computer to increase the number of orders it can process. If economic conditions remain good, the company will realize a large increase in profit; however, if the economy takes a downturn, the company will lose money.
- □ possible decisions are:
 - to purchase the computer and
 - to not purchase the computer.
- □ The states of nature are:
 - good economic conditions and
 - bad economic conditions.

Example – Payoff Table

<u>**Payoff Table</u>**: A table used to show the payoffs that can result from decisions under various states of nature</u>

	Р	ossible Future Den	nand
Alternatives	Low	Moderate	High
Small Facility	\$10	\$10	\$10
Medium Facility	7	12	12
Large Facility	-4	2	16

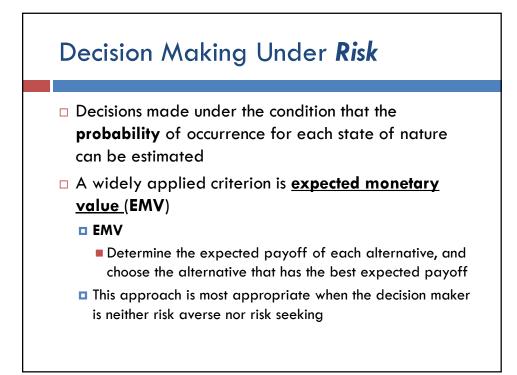
- A decision is being made concerning which size facility should be constructed
- The present value (in millions) for each alternative under each state of nature is expressed in the body of the above payoff table

	P	ossible Future Dema	and
Alternatives	Low	Moderate	High
Small Facility	\$10	\$10	\$10
Medium Facility	(7)	12	12
Large Facility	(-4)	2	16
Large fo	facility \$	10 million 7 million 4 million cility	

	F	ossible Future Dema	and
Alternatives	Low	Moderate	High
Small Facility	\$10	\$10	\$10
Medium Facility	7	12	12
Large Facility	-4	2	(16)
Small fo Medium Large fo	facility \$	10 million 12 million 16 million	

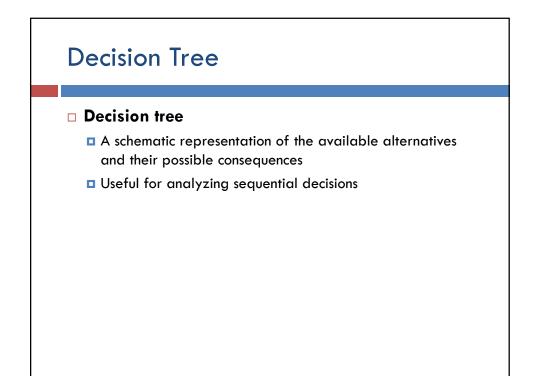
	F	ossible Future Dem	and
Alternatives	Low	Moderate	High
Small Facility	\$10	\$10	\$10
Medium Facility	7	12	12
arge Facility	-4	2	16
Small fo Medium Large fo	facility (7	0+10+10)/3 = \$10 m (+12+12)/3 = \$10.3 (4+2+16)/3 = \$4.67	3 million

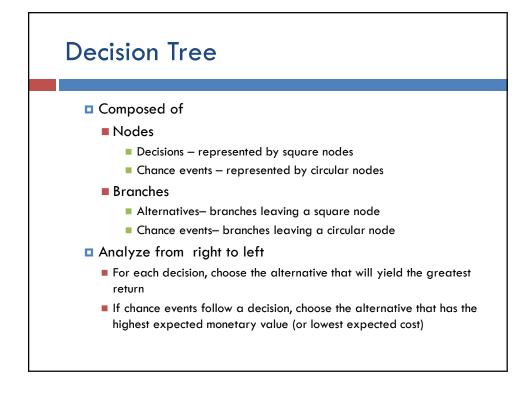
Example – Minimax Regret

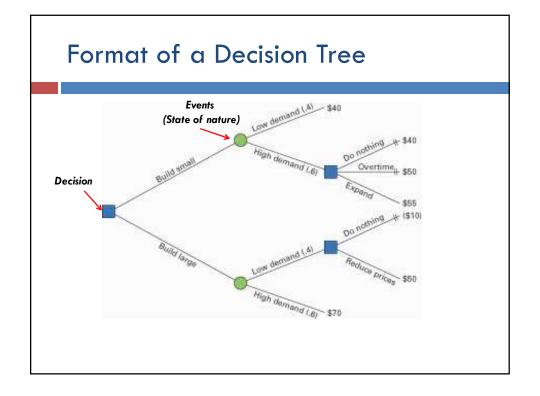

	P	ossible Future Dem	nand
Alternatives	Low	Moderate	High
Small Facility	\$10	\$10	\$10
Medium Facility	7	12	12
Large Facility	-4	2	16

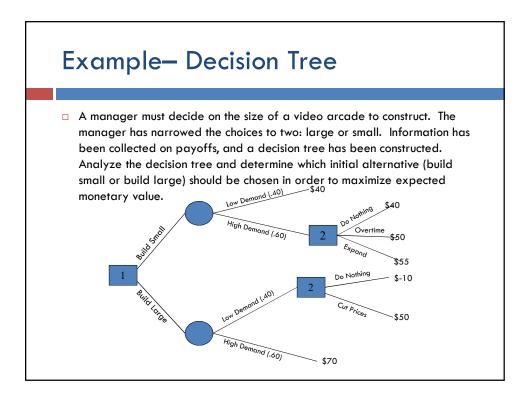
•Construct a regret (or opportunity loss) table

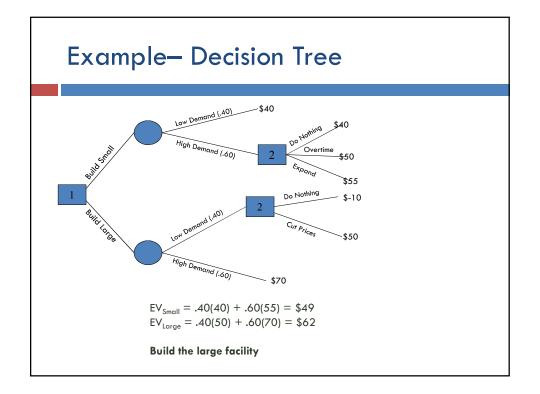
•The difference between a given payoff and the **best** payoff for a state of nature

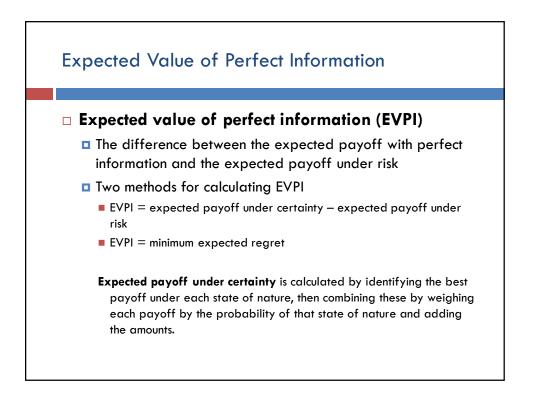

		Regrets	
Alternatives	Low	Moderate	High
Small Facility	\$0	\$2	\$6
Medium Facility	3	0	4
Large Facility	14	10	0

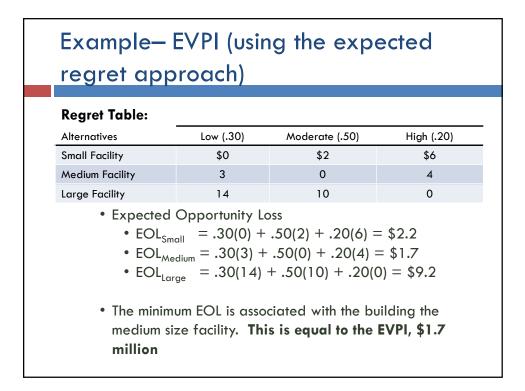

Alternatives	Low	Moderate	High
Small Facility	\$0	\$2	\$6
Medium Facility	3	0	(4)
Large Facility	(14)	10	0
•Small facil	ty cility \$4 mill ity	imum value) for eacl \$6 million ion \$14 million <u>nimum of the maxiu</u>	




Alternatives	Low (.30)	Moderate (.50)	High (.20
Small Facility	\$10	\$10	\$10
Medium Facility	7	12	12
Large Facility	-4	2	16


Build a medium facility





Example -	- EVPI		
•			
Alternatives	Low (.30)	Moderate (.50)	High (.20)
Small Facility	\$10	\$10	\$10
Medium Facility	7	(12)	12
Large Facility	-4	2	(16)
 EV_{with perfect inform} EMV = \$10.5 (s EVPI = EV_{with per} = \$12.2 	see slide no. 19) _{fect information} – EMV	50(12) + .20(16) =	\$12.2

Exercise 1

Fenton and Farrah Friendly, husband-and-wife car dealers, are soon going to open a new dealership. They have three offers: from a foreign compact car company, from a U.S.-producer of full-sized cars, and from a truck company. The success of each type of dealership will depend on how much gasoline is going to be available during the next few years. The profit from each type of dealership, given the availability of gas, is shown in the following payoff table:

2X	ercise 1 (cont.)	
	Dealership	Shortage (0.6)	Surplus (0.4)
	Compact cars	\$300,000	\$150,000
	Full-sized cars	100,000	600,000
	Trucks	120,000	170,000
	etermine which ould purchase	type of deale	ership the coup

Exercise 2

- The management of First American Bank was concerned about the potential loss that might occur in the event of a physical catastrophe such as a power failure or a fire. The bank estimated that the loss from one of these incidents could be as much as \$100 million, including losses due to interrupted service and customer relations. One project the bank is considering is the installation of an emergency power generator at its operations headquarters.
- □ The cost of the emergency generator is \$800,000, and if it is installed, no losses from this type of incident will be incurred.
- However, if the generator is not installed, there is a 10% chance that a power outage will occur during the next year. If there is an outage, there is a .05 probability that the resulting losses will be very large, or approximately \$80 million in lost earnings. Alternatively, it is estimated that there is a .95 probability of only slight losses of around \$1 million. Using decision tree analysis, determine whether the bank should install the new power generator.