
ITEC243 – Lecture Session – 13-APR-2020
More examples on Dynamic Memory Management
Example 1:

//point.h
class point{
 int x, y;
public:
 point()
 {
 this->x = 1;
 this->y = 2;
 }
 void print()
 {
 cout << "(" << this->x << "," << this->y << ")" << endl;
 }
 void set(int x, int y)
 {
 this->x = x; // x=x;???
 this->y = y;
 }
 ~point()
 {
 cout << "Object with values:" << this->x << " " << this->y << " has been
deleted." << endl;
 }
};
//point.cpp
#include<iostream>
using namespace std;
#include"point.h"
void main()
{
 //create dynamic object- dynamic objects are created along with pointers!!!
 point *a;
 a = new point[4]; //initializing the pointer object here!!!
 //and default constructor is executed automatically
 cout << a << endl; //now the pointer object has a value.
 for (int i = 0; i < 4; i++)
 a[i].print();
 delete[]a; //destructor is exectued automatically
 system("pause");
}

Output:
014E4964
(1,2)
(1,2)
(1,2)
(1,2)
Object with values:1 2 has been deleted.
Object with values:1 2 has been deleted.
Object with values:1 2 has been deleted.
Object with values:1 2 has been deleted.
Press any key to continue . . .

Example 2: (second main function for the same header (point.h)

//point2.cpp
#include<iostream>
using namespace std;
#include"point.h"
void main()
{
point *a[4];// array of pointers object
a[0] = new point;
a[0]->set(4, 5);
delete a[0]; //delete[]a;//deletes the whole array object
for (int i = 0; i < 4; i++)
{
 a[i] = new point;
 a[i]->set(i, i + 1);
 a[i]->print();
}
delete a[1];
system("pause");
}

0 – X= 1 4 ,Y= 2 5

1

2

3

0 – x=1 , y=2

1 – x =1 , y=2

2 – x=1 , y=2

3 – x=1 , y=2

After the line -- delete a[0];

 i=0
i=1
i=2
i=3

Output:
(0,1)
(1,2)
(2,3)
(3,4)

FRIEND FUNCTIONS
A friend function is a special function which is not a member of a class, but has direct access to
the private and protected members of the class. (Data-hiding (private data members) principle
is very important in C++).
A friend function of a class is defined outside that class’s scope.

 If a friend function (FF) is to be made friend of a class then its prototype has to be
declared within the body of the class preceded with the keyword friend.

 FF are neither public nor private, and it can be declared anywhere inside the class.

 Whenever a FF is defined, neither the name of the class nor scope resolution operator
appears in its definition (normally we have to use name of the class as well as the (: :)
operator as void rectangle::setLength(int length))

 Whenever a FF is called, neither the name of the object nor dot operator appear.

 If a FF wants to manipulate the values of the data members of an object, it needs to
reference (&) the object to be passed as parameter.

 Friends are not symmetric. That is, If Class1 is a friend of Class2, it does not imply that
Class2 is a friend of Class1!!!!

 Friends are also not transitive. That is, if Class1 is a friend of Class2, and Class2 is a friend
of Class3, it does not imply that Class1 is a friend of Class3.

 Using FFs enhances the performance of the code.

 Use friend feature with CARE!!! Incorrect use of friends may corrupt the concept of
information hiding and encapsulation principle.

In composition (employees and departments classes. Assume we have link (relationship)
between employees and departments, e.g. employees work for a department). We create
an object of a class inside another class!!!!
In Inheritance (employee class has types, e.g. Hourly_Paid, Regular_EMPs). To show is-a
relationship between the class (super-class and its sub-classes) we use inheritance feature

0 – x=1 0 , y=2 1

1- X=1 1 , y=2 2

2- X=1 2 , y=2 3

3- X=1 3 , y=2 4

of C++. In Relational DBs we cannot implement inheritance relationship between the
entities/tables. But in C++, we can implement inheritance relationship between the classes
in OOP!!!!

Example:

//example.h
class example{
private:
 int num;
public:
 example()
 {
 this->num = 0;
 }
 friend int getnum(example); //prototype of FF
 friend void setnum(example&, int);
};
//definition of FF has to be outside the class
int getnum(example eobj)
{
 return eobj.num;
}
void setnum(example& eobj, int a)
{
 eobj.num = a;
}

//example.cpp
#include<iostream>
using namespace std;
#include"ex1_ff.h"
void main()
{
 example e;
 cout << "Friend function returns the value of the private data member of the object ="
 << getnum(e) << endl;
 setnum(e, 5);
 cout << "After calling setnum() function we manipulated the private data
 member of the class ="<< getnum(e) << endl;
 system("pause");
}

