LEAST COST CALCULATIONS

ASST. PROF. DR. TOLGA ÇELİK

CIVIL ENGINEERING DEPARTMENT

CONSTRUCTION COST

GENERALLY CONSTRCUTION COSTS ARE DIVIDED INTO TWO

- DIRECT COSTS
- INDIRECT COSTS

DIRECT COSTS

DIRECT COSTS ARE ASSOCIATED WITH THE PHYSICAL CONSTRUCTION OF THE PROJECT INCLUDING

- MATERIALS,
- EQUIPMENT AND
- LABOR AND
- SUBCONTRACTOR (IF EXISTS)

INDIRECT COSTS

- INDIRECT COSTS ARE NOT EASY TO VISUALIZE.
- THEY ARE GENERALLY BROKEN DOWN INTO TWO CATEGORIES:
 - HEAD OFFICE OVERHEAD AND
 - GENERAL CONDITIONS (PROJECT OR SITE OVERHEAD).

CRASHING COST CALCULATIONS (LEAST COST CALCULATIONS)

- CRASHING A PROJECT MEANS THE PROCESS OF ACCELERATING AN ACTIVITY OR MULTIPLE ACTIVITIES TO SHORTEN THE OVERALL DURATION OF A PROJECT.
- BY ADDING ADDITIONAL PEOPLE, EQUIPMENT, OR MAN- HOURS, A PROJECT MANAGER CAN SHORTEN AN ACTIVITY'S DURATION.
- IF THE ACTIVITY AFFECTED IS CRITICAL, THE PROJECT WILL BE SHORTENED AS WELL.
- ACTIVITIES ARE CRASHED FOR DIFFERENT REASONS:
- AN ACTIVITY MAY NEED TO BE COMPLETED BY A SPECIFIC DATE FOR CONTRACTUAL REASONS.
- SOME ACTIVITIES CAN BE ACCOMPLISHED MORE ECONOMICALLY DURING A CERTAIN TIME OF THE YEAR, ENCOURAGING MANAGERS TO ACCELERATE PRECEDING ACTIVITIES.

LEAST COST CALCULATIONS (continued)

- THE COST TO ACCELERATE AN ACTIVITY WHICH SHORTENS PROJECT'S DURATION MAY BE LESS EXPENSIVE THAN THE COST OF RUNNING THE PROJECT FOR THE SAME PERIOD.
- WHEN AN ACTIVITY IS CRASHED, IT'S DIRECT COSTS INCREASE DUE TO THE FOLLOWING REASONS.
 - THE INEFFICIENCIES CAUSED BY ACCELERATING THE WORK AT A RATE FASTER THAN NORMAL; (overtime)
 - PEOPLE MAY END UP WORKING IN TIGHTER QUARTERS, OR EQUIPMENT MAY SIT IDLE; crowding effect
- BUT THESE COSTS INCREASES MAY BE JUSTIFIED IF INDIRECT COSTS ARE DECREASED.
- ALTHOUGH THERE IS A CLEAR BENEFIT TO OPTIMIZING A PROJECT'S DURATION ON THE BASIS OF COST, CRASHING IS NOT A ROUTINE STEP IN PROJECT PLANNING.;

LEAST COST CALCULATIONS (continued)

- THE INTEGRATION OF SCHEDULING AND ESTIMATING INFORMATION CANNOT BE EASILY LINKED SINCE THE ACTIVITY UNITS ARE OFTEN NOT THE SAME.
- IT IS ALSO UNUSUAL TO CALCULATE CRASH COSTS FOR EACH ACTIVITY AND THEN FORMALLY ANALYZE AND COMPARE THOSE COSTS WITH INDIRECT COSTS.
- THIS PROCESS TAKES A CONSIDERABLE AMOUNT OF TIME AND IS DIFFICULT TO AUTOMATE.
- ANOTHER REAL CONCERN IS THAT, AS A PROJECT IS CRASHED, MULTIPLE CRITICAL PATHS ARE CREATED.
- AS MORE CRITICAL PATHS APPEAR, THERE IS A GREATER RISK OF DELAYING COMPLETION TIME.

LEAST COST CALCULATIONS (continued)

- NEVERTHELESS, THE PROCESS OF DETERMINING THE OPTIMUM DURATION FOR A PROJECT IS AN IMPORTANT STEP IN PROPER PLANNING.
- PROPERLY ANALYZING COSTS AND THEN RUNNING THE PROJECT IN THE MOST COST- EFFECTIVE WAY CAN SAVE CONSIDERABLE TIME AND MONEY.
- AS EXPERT SYSTEM TECHNOLOGY IMPROVES AND COST AND SCHEDULE INFORMATION BECOMES MORE FULLY INTEGRATED, THIS KIND OF STUDY BECOMES MORE ROUTINE.

Least Cost (Crash Time) Calculations Example: 1

Find: Optimum time and least total cost for the project given below. Overhead cost = £100/day

Example: 1

Operation		Description	Dura (Da		Direct Cost (£)		
į	j	ni of the second se	Normal	Crash	Normal	Crash	
2	4	A	4	2	400	500	
2	6	В	8	5	800	980	
2	8	С	3	2	600	700	
4	10	D	10	6	500	600	
6	10	E	8	6	800	950	
8	10	F	7	4	700	1000	

Solution of Example: 1

Step 1: Find normal duration of the project and normal cost for that normal duration.

Direct cost = 400+ 800+ 600+ 500+ 800+ 700 = **£**3800

Indirect cost = 16 days * f100/day = f1600Total normal cost = f5400

Step 2: Calculate cost/day of activities by crashing duration.

Activities	Crashing Durat	tion (Days)	Cost per day (£)				
Α	4-2=	2	500-400=100	100/2=50			
В	8-5=	3	980-800=180	180/3=60			
С	3-2=	1	700-600=100	100/1=100			
D	10-6=	4	600-500=100	100/4=25			
E	8-6=	2	950-800=150	150/2=75			
F	7-4=	3	1000-700=300	300/3=100			

It is useful to use a worksheet such as shown below.

Activity	Dura	tion	Cost	(£)			•	Days Shortened					
	Normal	Crash	Normal	Crash	Δ Cost	Δ Days	∆ Cost/Days	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	
A	4	2	400	500	100	2	50						
В	8	5	800	980	180	3	60	1	1	1			
С	3	2	600	700	100	1	100	2					
D	10	6	500	600	100	4	25			1	1	1	
E	8	6	800	950	150	2	75	8	0. 		1	1	
F	7	4	700	1000	300	3	100		3 			1	
					Day	s cut		1	2	3	4	5	
					Project	duration	16	15	14	13	12	11	
					Increased	d cost/day		60	60	85	100	200	
					Directo	:ost/day	3800	3860	3920	4005	4105	4305	
					Overhe	ad cost	1600	1500	1400	1300	1200	1100	
					Tota	l cost	5400	5360	5320	5305	5305 ¹	5405	

Cycle 1: Activity which is on critical path and has the smallest cost/day is crashed by 1 day. Activities on critical paths are B = £60/day and E = £75/day. Therefore, B is crashed by 1 day.

Then calculate direct cost and overhead cost and total cost.

- Cycle 2: Critical activities are B = £60/day and E = £75/day. Therefore, activity B is crashed one more day.
- Then calculate direct cost and overhead cost and total cost.

15

- Cycle 3: Two paths are critical. Critical activities are A=£50/day, B = £60/day, D= £25/day and E = £75/day. Crash one day from each path to reduce the project duration to 13.
 - Activities to be crashed are A or D and B or E. Therefore, crash activities B and D.

Cycle 5: Critical activities are A=£50/day, D= £25/day and E = £75/day.

Two paths are critical as in cycle 3. Activities to be crashed are A or D and E. Therefore, crash activities D and E.

Cycle 5: Critical activities are D=£25/day, E= £50/day and F = £100/day. Therefore, crash activities D, E and F.

Example: 2

Crash the following network schedule (arrow diagram) and find the optimum time and least cost. Indirect cost = \$100/day.

A at indian I do not itse	Duration	(Days)	Direct Cost (£)		
Activity Identity	Normal	Crash	Normal	Crash	
A	6	4	600	780	
В	10	7	500	875	
С	12	8	600	900	
D	8	4	800	940	
E	6	3	600	795	
F	4	2	800	850	

• Solution:

Solution:

- Direct cost = 600+ 500+ 600+ 800+ 600+ 800 = \$3900
- Indirect cost = 30 days * \$100/day
 \$3000
- Total normal cost =\$6900

• Solution:

Activity Identity	Duration	(Days)	Direct C	Crash Cost		
Activity Identity	Normal	Crash	Normal	Crash	per Day	
A	6	4	600	780	90	
В	10	7	500	875	125	
С	12	8	600	900	75	
D	8	4	800	940	35	
E	6	3	600	795	65	
F	4	2	800	850	25	

• Solution:

Cycle 1: Crash F and pay \$25 extra.

- Direct cost = 600+ 500+ 600+ 800+ 600+ 825 = \$3925
- Indirect cost = 29 days * **\$**100/day \$2900

Total normal cost =**\$6825**

• Solution:

- Solution:
- Cycle 2: Crash F again and pay \$25 extra.
 Direct cost = 600+ 500+ 600+ 800+ 600+ 850 = \$3950
- Indirect cost = 28 days * **\$**100/day \$2800

Total normal cost =\$6750

• Solution:

- Solution:
- Cycle 3: Crash D and pay \$35 extra.
- Direct cost = 600+ 500+ 600+ 835+ 600+ 850 = \$3985
- Indirect cost = 27 days * **\$**100/day \$2700

Total normal cost =**\$6685**

• Solution:

- Solution:
- Cycle 4: Crash D again and pay \$35 extra.
 Direct cost = 600+ 500+ 600+ 870+ 600+ 850 = \$4020
- Indirect cost = 26 days * **\$**100/day \$2600

Total normal cost =\$6620

• Solution:

PROBLEM 8

Completely crash the following network schedules and find the optimum time and the least cost. Over head costs= \$60 per day.

Activities		Duration	C	ost \$							
	Normal	Crash	Normal	Crash							
Α	6	3	300	360							
В	6	4	450	500							
C	4	2	360	420							
D	6	3	600	675							
E	3	2	325	350							
F	2	1	250	285							
G	2	1	310	350							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
	6	/									

Critical path: 1-3-5-7-9Normal project duration=11 days Direct cost= 300+450+360+600+325+250+310=2595Overhead cost= (11*60) = 660 Normal project cost = (2595+660) = \$3255

Cycle 1:

Among activities on critical path C-E-F-G, activity E has minimum cost per day. Thus crash activity E by 1 day at \$ 25. New project duration: 11-1= 10 days New project cost= 3255+25-60= \$3220

	Durat	tion	Cost	(\$)	Δ	Δ	Δ	Days Shortened					
Activity					D Cost		Cost/	Cycle	Cycle			Cycle	
	Normal	Crash	Normal	Crash		Days	Day	1	2	Cycle 3	Cycle 4	5	
A	6	3	300	360	60	3	20						
В	6	4	450	500	50	2	25				1	1	
С	4	2	360	420	60	2	30				1	1	
D	6	3	600	675	75	3	25					1	
E	3	2	325	350	25	1	25	1					
F	2	1	250	285	35	1	35		1				
G	2	1	310	350	40	1	40			1			
					Day	s cut		1	1	1	1	1	
						ject ation	11	10	9	8	7	6	
					Incre	eased /day		25	35	40	55	80	
					Direc	t cost	2595	2620	2655	2695	2750	2830	
						head Ost	660	600	540	480	420	360	
					Tota	l cost	3255	3220	3195	3175	3170	3190	

Cycle 2:

Note that there are two critical paths to shorten at the same time, 1-3-5-7-9 and 1-5-7-9.

Crash cost for activities C (1-3) + B (1+5) = 25+30= \$55 Crash cost for activity F (5-7) = \$35

Crash cost for activity G (5-7)

Activity (5-7) has the cheapest cost slope, potential 1 day. Therefore, crash activity F (5-7) by 1 day. New project duration: 10-1= 9 days

= \$40

New project cost= 3220+35-60= \$3195

Cycle 3:

Among activities on critical path, activity G (7-9) has the cheapest cost slope \$ 40 per day and potential 1 day. Compress activity G by 1 day. New project duration: 9-1= 8 days New project cost= 3195+40-60= \$3175

Cycle 4:

Simultaneous crash of activities C (1-3) and B (1-5) have the cheapest combined cost slope, with 2 days potential. Full compression (crash) is not possible since non critical activity D (1-7) terminating at 7 has only 1 day Free Float less than the potential available. Hence crash activities C and B by 1 day simultaneously. New project duration: 8-1= 7 days New project cost= 3195+ (30+25)-60= \$3170

Cycle 5:

Note that now there are multiple critical paths to shorten, 1-3-5-7-9, 1-5-7-9, 1-7-9.

Crash activities B, C and D by 1 day simultaneously.

New project duration: 7-1= 6 days

New project cost= 3170+ (25+30+25)-60= \$3190

The potential available for critical paths (1-3-5-7-9) and (1-5-7-9) is completely crashed. Stop here.

Therefore, the optimum project duration is 7 days. Least cost = \$ 3170

THANKS FOR YOUR ATTENTION