LEAST COST CALCULATIONS

ASST. PROF. DR. TOLGA ÇELIK

CIVIL ENGINEERING DEPARTMENT

CONSTRUCTION COST

GENERALLY CONSTRCUTION COSTS ARE DIVIDED INTO TWO

- DIRECT COSTS
- INDIRECT COSTS

DIRECT COSTS
DIRECT COSTS ARE ASSOCIATED WITH THE PHYSICAL CONSTRUCTION OF THE PROJECT INCLUDING

- MATERIALS,
- EQUIPMENT AND
- LABOR AND
- SUBCONTRACTOR (IF EXISTS)

INDIRECT COSTS

- INDIRECT COSTS ARE NOT EASY TO VISUALIZE.
- THEY ARE GENERALLY BROKEN DOWN INTO TWO CATEGORIES:
- HEAD OFFICE OVERHEAD AND
- GENERAL CONDITIONS (PROJECT OR SITE OVERHEAD).

CRASHING COST CALCULATIONS (LEAST COST CALCULATIONS)

- CRASHING A PROJECT MEANS THE PROCESS OF ACCELERATING AN ACTIVITY OR MULTIPLE ACTIVITIES TO SHORTEN THE OVERALL DURATION OF A PROJECT.
- BY ADDING ADDITIONAL PEOPLE, EQUIPMENT, OR MAN- HOURS, A PROJECT MANAGER CAN SHORTEN AN ACTIVITY'S DURATION.
- IF THE ACTIVITY AFFECTED IS CRITICAL, THE PROJECT WILL BE SHORTENED AS WELL.
- ACTIVITIES ARE CRASHED FOR DIFFERENT REASONS:
- AN ACTIVITY MAY NEED TO BE COMPLETED BY A SPECIFIC DATE FOR CONTRACTUAL REASONS.
- SOME ACTIVITIES CAN BE ACCOMPLISHED MORE ECONOMICALLY DURING A CERTAIN TIME OF THE YEAR, ENCOURAGING MANAGERS TO ACCELERATE PRECEDING ACTIVITIES.

LEAST COST CALCULATIONS (continued)

- THE COST TO ACCELERATE AN ACTIVITY WHICH SHORTENS PROJECT'S DURATION MAY BE LESS EXPENSIVE THAN THE COST OF RUNNING THE PROJECT FOR THE SAME PERIOD.
- WHEN AN ACTIVITY IS CRASHED, IT'S DIRECT COSTS INCREASE DUE TO THE FOLLOWING REASONS.
- THE INEFFICIENCIES CAUSED BY ACCELERATING THE WORK AT A RATE FASTER THAN NORMAL; (overtime)
- PEOPLE MAY END UP WORKING IN TIGHTER QUARTERS, OR EQUIPMENT MAY SIT IDLE; crowding effect
- BUT THESE COSTS INCREASES MAY BE JUSTIFIED IF INDIRECT COSTS ARE DECREASED.
- ALTHOUGH THERE IS A CLEAR BENEFIT TO OPTIMIZING A PROJECT'S DURATION ON THE BASIS OF COST, CRASHING IS NOT A ROUTINE STEP IN PROJECT PLANNING. ;

LEAST COST CALCULATIONS (continued)

- THE INTEGRATION OF SCHEDULING AND ESTIMATING INFORMATION CANNOT BE EASILY LINKED SINCE THE ACTIVITY UNITS ARE OFTEN NOT THE SAME.
- IT IS ALSO UNUSUAL TO CALCULATE CRASH COSTS FOR EACH ACTIVITY AND THEN FORMALLY ANALYZE AND COMPARE THOSE COSTS WITH INDIRECT COSTS.
- THIS PROCESS TAKES A CONSIDERABLE AMOUNT OF TIME AND IS DIFFICULT TO AUTOMATE.
- ANOTHER REAL CONCERN IS THAT, AS A PROJECT IS CRASHED, MULTIPLE CRITICAL PATHS ARE CREATED.
- AS MORE CRITICAL PATHS APPEAR, THERE IS A GREATER RISK OF DELAYING COMPLETION TIME.

LEAST COST CALCULATIONS (continued)

- NEVERTHELESS, THE PROCESS OF DETERMINING THE OPTIMUM DURATION FOR A PROJECT IS AN IMPORTANT STEP IN PROPER PLANNING.
- PROPERLY ANALYZING COSTS AND THEN RUNNING THE PROJECT IN THE MOST COST- EFFECTIVE WAY CAN SAVE CONSIDERABLE TIME AND MONEY.
- AS EXPERT SYSTEM TECHNOLOGY IMPROVES AND COST AND SCHEDULE INFORMATION BECOMES MORE FULLY INTEGRATED, THIS KIND OF STUDY BECOMES MORE ROUTINE.

Least Cost (Crash Time) Calculations

Example: 1

Find: Optimum time and least total cost for the project given below. Overhead cost = $£ \mathbf{1 0 0} /$ day

Least Cost (Crash Time) Calculations

Example: 1

		Operation	Duration (Days)		Direct Cost (£)	
i	j			Normal	Crash	Normal
	Crash					
2	4	A	4	2	400	500
2	6	B	8	5	800	980
2	8	C	3	2	600	700
4	10	D	10	6	500	600
6	10	E	8	6	800	950
8	10	F	7	4	700	1000

Least Cost (Crash Time) Calculations

Solution of Example: 1

: CRITICAL ACTIVITY

Least Cost (Crash Time) Calculations

Step 1: Find normal duration of the project and normal cost for that normal duration.
Direct cost $=400+800+600+500+800+700=£ 3800$ Indirect cost = 16 days * $£ 100 /$ day $\quad \mathbf{£ 1 6 0 0}$

Total normal cost $=£ 5400$
Step 2: Calculate cost/day of activities by crashing duration.

Activities	Crashing Duration (Days)		Cost per day (£)	
A	$4-2=$	2	$500-400=100$	$100 / 2=50$
B	$8-5=$	3	$980-800=180$	$180 / 3=60$
C	$3-2=$	1	$700-600=100$	$100 / 1=100$
D	$10-6=$	4	$600-500=100$	$100 / 4=25$
E	$8-6=$	2	$950-800=150$	$150 / 2=75$
F	$7-4=$	3	$1000-700=300$	$300 / 3=100$

Least Cost (Crash Time) Calculations

It is useful to use a worksheet such as shown below.

Activity	Duration		$\operatorname{Cost}(\mathrm{f})$		$\begin{gathered} \Delta \\ \text { cost } \end{gathered}$	$\underset{\text { Days }}{\Delta}$	Δ Cost/Days	Days Shortened				
	Normal	Crash	Normal	Crash				Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
A	4	2	400	500	100	2	50					
B	8	5	800	980	180	3	60	1	1	1		
C	3	2	600	700	100	1	100					
D	10	6	500	600	100	4	25			1	1	1
E	8	6	800	950	150	2	75				1	1
F	7	4	700	1000	300	3	100					1
					Days cut			1	2	3	4	5
					Project duration		16	15	14	13	12	11
					Increased cost/day			60	60	85	100	200
					Direct cost/day		3800	3860	3920	4005	4105	4305
					Overhead cost		1600	1500	1400	1300	1200	1100
					Total cost		5400	5360	5320	5305	$5305{ }^{1}$	5405

Least Cost (Crash Time) Calculations

- Cycle 1: Activity which is on critical path and has the smallest cost/day is crashed by 1 day. Activities on critical paths are $\mathbf{B}=$ $£ 60 /$ day and $E=£ \mathbf{7 5} /$ day. Therefore, B is crashed by 1 day. Then calculate direct cost and overhead cost and total cost.

Least Cost (Crash Time) Calculations

- Cycle 2: Critical activities are $\mathbf{B}=\mathbf{£ 6 0 / \text { day }}$ and $\mathbf{E}=$ $£ 75 /$ day. Therefore, activity B is crashed one more day.
- Then calculate direct cost and overhead cost and total cost.

Least Cost (Crash Time) Calculations

- Cycle 3: Two paths are critical. Critical activities are $\mathbf{A}=£ 50 /$ day, \mathbf{B}
$=£ 60 /$ day, $\mathbf{D}=£ \mathbf{£ 2} /$ day and $\mathbf{E}=£ 75 /$ day. Crash one day from each path to reduce the project duration to 13.
Activities to be crashed are A or D and B or E. Therefore, crash activities B and D.

Least Cost (Crash Time) Calculations

- Cycle 5: Critical activities are $\mathrm{A}=£ 50 /$ day, $\mathrm{D}=£ \mathbf{2 5} /$ day and $\mathrm{E}=$ £75/day.
Two paths are critical as in cycle 3. Activities to be crashed are A or D and E. Therefore, crash activities D and E.

Cycle 5: Critical activities are $D=£ 25 /$ day, $E=£ 50 /$ day and $F=£ 100 /$ day . Therefore, crash activities D, E and F.

Least Cost (Crash Time) Calculations

Example: 2

Crash the following network schedule (arrow diagram) and find the optimum time and least cost. Indirect cost = \$100/day.

Activity Identity	Duration (Days)		Direct Cost (£)	
	Normal	Crash	Normal	Crash
A	6	4	600	780
B	10	7	500	875
C	12	8	600	900
D	8	4	800	940
E	6	3	600	795
F	4	2	800	850

Least Cost (Crash Time) Calculations

- Solution:

Least Cost (Crash Time) Calculations

Solution:

- Direct cost $=600+500+600+800+600+800=$ \$3900
- Indirect cost $=30$ days * $\$ 100 /$ day $=$ \$3000
- Total normal cost $=\mathbf{\$ 6 9 0 0}$

Least Cost (Crash Time) Calculations

- Solution:

Activity Identity	Duration (Days)		Direct Cost (£)		Crash Cost per Day
	Normal	Crash	Normal	Crash	
A	6	4	600	780	90
B	10	7	500	875	125
C	12	8	600	900	75
D	8	4	800	940	35
E	6	3	600	795	65
F	4	2	800	850	25

Least Cost (Crash Time) Calculations

- Solution:

Cycle 1: Crash F and pay $\$ 25$ extra.
Direct cost $=600+500+600+800+600+825=$ \$3925
Indirect cost = 29 days * $\$ 100 /$ day $=$ \$2900
Total normal cost $=\mathbf{\$ 6 8 2 5}$

Least Cost (Crash Time) Calculations

- Solution:

Least Cost (Crash Time) Calculations

- Solution:
- Cycle 2: Crash F again and pay $\$ 25$ extra.

Direct cost $=600+500+600+800+600+850=$ \$3950
Indirect cost = 28 days * $\$ 100 /$ day
=
\$2800
Total normal cost $=\mathbf{\$ 6 7 5 0}$

Least Cost (Crash Time) Calculations

- Solution:

Least Cost (Crash Time) Calculations

- Solution:
- Cycle 3: Crash D and pay $\$ 35$ extra.

Direct cost $=600+500+600+835+600+850=$ \$3985
Indirect cost = 27 days * $\$ 100 /$ day
$=$
\$2700
Total normal cost $=\mathbf{\$ 6 6 8 5}$

Least Cost (Crash Time) Calculations

- Solution:

Least Cost (Crash Time) Calculations

- Solution:
- Cycle 4: Crash D again and pay $\$ 35$ extra.

Direct cost $=600+500+600+870+600+850=$ \$4020
Indirect cost = 26 days * $\$ 100 /$ day
=
\$2600
Total normal cost $=\mathbf{\$ 6 6 2 0}$

Least Cost (Crash Time) Calculations

- Solution:

PROBLEM 8

Completely crash the following network schedules and find the optimum time and the least cost. Over head costs= $\$ 60$ per day.

Activities	Duration		Cost \$	
	Normal	Crash	Normal	Crash
A	6	3	300	360
B	6	4	450	500
C	4	2	360	420
D	6	3	600	675
E	3	2	325	350
F	2	1	250	285
G	2	1	310	350

SOLUTION OF PROBLEM 8

Critical path: 1-3-5-7-9
Normal project duration $=11$ days
Direct cost $=300+450+360+600+325+250+310=2595$
Overhead cost= (11*60) = 660
Normal project cost $=(2595+660)=\$ 3255$
Cycle 1:
Among activities on critical path C-E-F-G, activity E has minimum cost per day.
Thus crash activity E by 1 day at $\$ 25$.
New project duration: 11-1= 10 days
New project cost= 3255+25-60=\$3220

SOLUTION OF PROBLEM 8

Activity	Duration		Cost (\$)		$\begin{gathered} \Delta \\ \text { Cost } \end{gathered}$	Δ Days	Δ Cost/ Day	Days Shortened				
	Normal	Crash	Normal	Crash				Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
A	6	3	300	360	60	3	20					
B	6	4	450	500	50	2	25				1	1
C	4	2	360	420	60	2	30				1	1
D	6	3	600	675	75	3	25					1
E	3	2	325	350	25	1	25	1				
F	2	1	250	285	35	1	35		1			
G	2	1	310	350	40	1	40			1		
					Days cut			1	1	1	1	1
					Project duration		11	10	9	8	7	6
					Increased cost/day			25	35	40	55	80
					Direct cost		2595	2620	2655	2695	2750	2830
					Overhead cost		660	600	540	480	420	360
					Total cost		3255	3220	3195	3175	3170	3190

SOLUTION OF PROBLEM 8

Cycle 2:
Note that there are two critical paths to shorten at the same time, 1-3-5-7-9 and 1-5-7-9.
Crash cost for activities C (1-3) + B (1+5) = 25+30=\$55
Crash cost for activity F (5-7) = \$35
Crash cost for activity G (5-7) = \$40
Activity (5-7) has the cheapest cost slope, potential 1 day. Therefore, crash activity $\mathrm{F}(5-7)$ by 1 day.
New project duration: 10-1= 9 days
New project cost $=3220+35-60=\$ 3195$

SOLUTION OF PROBLEM 8

Cycle 3:
Among activities on critical path, activity G (7-9) has the cheapest cost slope $\$ 40$ per day and potential 1 day. Compress activity \mathbf{G} by 1 day.
New project duration: 9-1= 8 days
New project cost= $3195+40-60=\$ 3175$

SOLUTION OF PROBLEM 8

Cycle 4:
Simultaneous crash of activities C (1-3) and B (1-5) have the cheapest combined cost slope, with 2 days potential. Full compression (crash) is not possible since non critical activity D (1-7) terminating at 7 has only 1 day Free Float less than the potential available. Hence crash activities C and B by 1 day simultaneously.
New project duration: 8-1 = 7 days
New project cost $=3195+(30+25)-60=\$ 3170$

SOLUTION OF PROBLEM 8

Cycle 5:
Note that now there are multiple critical paths to shorten, 1-3-5-7-9, 1-5-7-
9, 1-7-9.
Crash activities B, C and D by 1 day simultaneously.
New project duration: 7-1= 6 days
New project cost= 3170+ (25+30+25)-60= \$3190
The potential available for critical paths (1-3-5-7-9) and (1-5-7-9) is completely crashed. Stop here.

SOLUTION OF PROBLEM 8

SOLUTION OF PROBLEM 8

Therefore, the optimum project duration is 7 days.
Least cost = \$ 3170

THANKS FOR YOUR ATTENTION

