Energy Management \& Utilization

Chapter 4
 Economic Decisions for Energy Projects

Prof. Dr. Ugur Atikol, cea

Director of EMU Energy Research Centre

The Need for Economic Analysis

- The decision on whether management will invest in an energy savings project - or energy conservation measure (ECM) - often hinges on how successfully the energy manager communicates with the decision makers using their rules, words and decision criteria.
- The energy manager must present projects in economic terms in order to help the decion makers to make their decisions.

The Need for Economic Analysis (continued)

- The energy manager must learn to speak management's language.
- To do this he/she must present the project in economic terms.

- There are many measures of project economic analysis, and many businesses and industries use their own methods or procedures to make their decisions.
- This chapter presents the basic elements used to determine the cost-effectiveness of projects and a few of the most popular measures of cost-effectiveness.

Simple Payback Period

- Simple Payback Period or Payback Period does not include the time value of money.
- It is simple and easy to use, and that is why many organizations use it.
- For periods of one to two years, this is mostly OK for some people.
- SPP is not an acceptable method for longer time periods.

What is «Pay Back Period»?

- Payback period is the time required to cover the cost of investment.
- Simple payback period (SPP) ignores the time value of money.

$$
\text { Simple Payback Period }=\frac{\text { Investment }}{\text { Cash inflow per year }}
$$

- Usually periods larger than a few years do not make any sense.
- It is simple and easy to use, and that is why many organizations use it.
- For periods of one to two years, this is mostly OK for some people.
- SPP is not an acceptable method for longer time periods.

SPP Example

A lighting improvement costs $\$ 1000$.The improvement saves $\$ 500$ each year. What is the Simple Payback Period?

$$
\mathrm{SPP}=\frac{\$ \text { cost }}{\$ \text { savings } / \mathrm{yr}}=
$$

$$
=
$$

SPP Example -- Solution

A lighting improvement costs $\$ 1000$.The improvement saves $\$ 500$ each year. What is the Simple Payback Period?

$$
\mathrm{SPP}=\frac{\$ \operatorname{cost}}{\$ \text { savings } / \mathrm{yr}}=\frac{\$ 1000}{\$ 500 / \mathrm{yr}}=2 \mathrm{yrs}
$$

Decision Rule for Payback Period

- Project is feasible if the payback period is less than the target payback period
- Example:An energy project requires an investment of $\$ 250$ million and expected to return $\$ 75$ million/year for 5 years. The simple payback period is

$$
\begin{aligned}
& =\frac{\$ 250 \text { million }}{\$ 75 \text { million } / \text { year }} \\
& =3.33 \text { years }
\end{aligned}
$$

- The project is accepted as feasible

Time Value of Money

- A dollar tomorrow is not worth as much as a dollar today because money has earning power.
- The dollar today could be placed in a bank and earn interest so that it is worth more than a dollar tomorrow.
- This relationship between interest and time is called the time value of money.

Time Value of Money

This time value of money means that equal dollar amounts at different points in time have different values as long as the interest rate that can be earned exceeds zero.

- The fundamental approach to correctly account for cash inflows and outflows at different times is called discounted cash flow analysis.

Discounted Payback Period

- It calculates the present value of each cash inflow assuming the start of the first period as zero point
- The discounted cash inflow:

Discounted Cash Inflow $=\frac{\text { Actual Cash Inflow }}{(1+i)^{n}}$
where
$i=$ discount rate

$$
\mathrm{n}=\text { period of cash inflow (years) }
$$

- The cash inflow value for each year is inserted into the equation and a more realistic payback period is obtained.

Discounted Payback Period

- Example: An energy project requires an investment of $\$ 250$ million and expected to return $\$ 75$ million/year with a discount rate of 3% for $\mathbf{5}$ years. The simple payback period is

Discounted cash flow :
$=\frac{\$ 75 \text { million }}{(1+0.03)^{5}}=\frac{\$ 75 \text { million }}{1.159}=\$ 64.71$ million
Discounted payback period
$=\frac{\$ 250 \text { million }}{\$ 64.71 \text { million } / \text { year }}=3.86$ years

- The project is accepted as feasible

Minimum Attractive Rate of Return

- To compare cash flows occurring at different times, we need an interest rate at which to discount the cash flows.
- Management at every firm generally has a target rate of interest that represents the lowest rate of return that will be considered acceptable for any investment.
- This interest rate is termed the minimum attractive rate of return, MARR.

Minimum Attractive Rate of Return

- The MARR can be viewed as a rate at which the firm can always invest, since it has a large number of opportunities that yield such a return.
- This is why the MARR is commonly referred to as the opportunity cost of capital.

Life Cycle Costing

- US government often requires Life Cycle Costing using the time value of money.
- Use Present Value (PV) analysis to find lowest life cycle cost (LCC)

$$
\mathrm{LCC}=\mathrm{PV}\left[\begin{array}{l}
\text { Purchase Cost }+ \text { Operating Cost } \\
+ \text { Disposal Cost }
\end{array}\right]
$$

- Need interest tables, a computer, or a calculator to find these PVs

Life Cycle Costing (continued)

- Present Value (PV) and Present Worth (PW) are the same thing
- A good project has a Net Present Value (NPV) greater than zero

$$
N P V=P V(\text { savings })-P V(\text { cost })
$$

- The Internal Rate of Return (IRR) is the interest rate (I) at which the PV of the savings equals the PV of the costs

Solve $\operatorname{PV}($ savings $)=P V($ cost $)$ for $I=I R R$

Time Value of Money Analysis

Formulae

Life Cycle Net Savings (Net Present Value)
NPV $=\Sigma$ PV Annual Savings $-\Sigma$ PV Life Cycle Investments
Savings-to-investment ratio:

SIR = Σ PV Annual Savings / Σ PV Life Cycle Investments
Internal rate of return:
$I R R=$ Discount rate, where $\operatorname{SIR}=1.0$, or NPV $=0$
Simple pay back period:
SPP = Initial investment / annual savings

Determining the Feasibility of Energy Projects

In energy projects we have:

- A reference application (usually referred to as the "old" system)
- A challenging technology (usually referred to as the "new" system)
- We need to determine if the life cycle costing of the challenger (new system) is less than the reference application (old system)
- In the analysis the capital cost, the energy savings and the O/M costs play an important role

Determining the Feasibility of Energy Projects

A simple "Ten steps" method:
I. Determine "old" costs (existing baseline conditions).
2. Determine "new" costs (implementation and beyond).
3. Calculate differences.
4. Choose discount rate.
5. Choose analysis period.
6. Estimate residual value of equipment at end of service life.
7. Calculate present value of annual savings.
8. Calculate present value of investments.
9. Calculate net present value.
10. Calculate savings-to-investment ratio and internal rate of return.

Life Cycle Cost Analysis: Inputs

Input in BLUE cells only.
TABLE 1
Life Cycle Investment Schedule, from Steps 1, 2, and

Year	New	Old	Net Amount
0			$\$ 0$
1			$\$ 0$
2			$\$ 0$
3			$\$ 0$
4			$\$ 0$
5			$\$ 0$
6			$\$ 0$
7			$\$ 0$
8			$\$ 0$
9			$\$ 0$
10			$\$ 0$
11			$\$ 0$
12			$\$ 0$
13			$\$ 0$
14			$\$ 0$
15			$\$ 0$
16			$\$ 0$
17			
18			
19			

TABLE 2

Annual Savings
Discount Rate
Añālys̄is periōd (y̌ears) \square (from Step 3)
(from Step 4)
(frōm Step 5)
Residual value
(from Step 6)

Life Cycle Cost Analysis: Calculations \& Outputs

TABLE 3: Savings Calculations

Annual Savings
PV Annual Savings
\square PV Annual Savings

TABLE 4: Investments

Year
Net Life Cyle Investments PV Life Cycle Investments
\square PV Life Cycle Investments

Net Cash Flows

TABLE 5: Results

Net Present Value (NPV)
Savings-to-Investment Ratio Internal Rate of Return (IRR) Simple Payback (years)

OUTPUTS

$\mathbf{\$ 0}$	(from Step 9)
(from Step 10)	
	(from Step 10)

a) Life cycle re-investments
b) Annual energy costs
c) Annual operations \& maintenance (O\&M)
costs
d) Other annual costs

Step 1a Old Re-investment Table

- Old equipment probably needs periodic re-investment to keep going.
- Assume:

Old re-investment costs
= \$50 000 every 4 years
(from maintenance records)

- Assume:

Last replacement was two years ago, so next replacement is in year 2.

- Enter data in "Old" column.

Year	Old
0	
1	
2	$\$ 50000$
3	
4	
5	
6	$\$ 50000$
7	
8	
9	$\$ 50000$
10	
11	
12	
13	
14	$\$ 50000$
15	
16	
17	
18	
19	

Step 1b

Annual Energy Costs

- Old annual energy costs
$=$ Old annual energy * cost of energy
- Example

Old annual energy costs
$=\$ 177000 / \mathrm{yr}$
(from energy audit)

Step 1c Annual O\&M Costs

Example

- In this case, assume poor maintenance at low cost.
- Operations and Maintenance (O\&M) = \$2 500/yr.

Step 1d
Other Annual Costs

- List other annual old costs that will be affected by the project, such as
- productivity
- penalties for pollution

New Costs (Implementation and Beyond)

- Initial investment
- Life cycle re-investments
- Annual energy costs
- Annual operations \& maintenance (O\&M) costs
- Other annual costs

Step 2a - Initial Investment

- Initial investment $=$ Basic project cost
+ engineering
+ profit
+ contingency
+ taxes
+ other
- For estimation purposes, add costs as \%.

Step 2a - Initial Investment (cont.)

Basic project cost	$=\$ 78000 \quad$ (from energy audit)	
Initial investment	$=$Basic project cost + engineering + profit + contingency + taxes	
	$=$	Basic project cost $*(1+0,2+0,1+0,1+0,2)$
	$=\$ 78000 * 1,6$	
	$=\$ 124800$	

- Enter data in year 0 of "New" column of investment table..

Five year replacement costs	$=$	25% of the initial investment (from manufacturer's recommendation)
	$=0,25 * \$ 124800$	
	$=\$ 31200$	

- Enter data in years I to end of "New" column of the investment table.

Steps 2a and 2b
 New Investment and Re-investment

- There is no $20^{\text {th }}$ year for reinvestment, even with 20 year analysis.
- Investments are considered to be made at the end of each year.
- At the end of the last year of analysis, the project is over.
- Further investment requires a new project with new analysis.

Year	New
0	$\$ 124800$
1	
2	
3	
4	
5	$\$ 31200$
6	
7	
8	
9	
10	$\$ 31200$
11	
12	
13	
14	
15	$\$ 31200$
16	
17	
18	
19	

Step 2c - Annual Energy Costs

- New annual energy costs
$=$ New annual energy * cost of energy

Example

New annual energy costs $=\$ 132000 / \mathrm{yr} \quad$ (from energy audit)

Step 2d Annual O\&M costs

Example

- New O\&M = \$5 000/yr
(from manufacturer's recommendations)

Step 2e - Other Annual Costs

- List other annual new costs that will be improved by the project, such as
- improved productivity
- reduced penalties

Step 3
 Calculate Differences

a) Life cycle investments
b) Annual savings

Step 3a - Life Cycle Investments

- Investments and
re-investments
- Only non-annual costs
- Spreadsheet subtracts
old costs from new costs.
Net $=$ new - old

Year	New	Old	Net Amount
0	$\$ 124800$		$\$ 124800$
1			$\$ 0$
2		$\$ 50000$	$-\$ 50000$
3			$\$ 0$
4			$\$ 0$
5	$\$ 31200$		$\$ 31200$
6		$\$ 50000$	$-\$ 50000$
7			$\$ 0$
8			$\$ 0$
9			$\$ 0$
10	$\$ 31200$	$\$ 50000$	$-\$ 18800$
11			$\$ 0$
12			$\$ 0$
13			$\$ 0$
14		$\$ 50000$	$-\$ 50000$
15	$\$ 31200$		$\$ 31200$
16			$\$ 0$
17			$\$ 0$
18		$\$ 50000$	$-\$ 50000$
19			$\$ 0$

Step 3b - Annual Savings

Annual cost savings

$$
\begin{aligned}
= & \text { (old energy cost - new energy cost) } \\
& +(\text { old O\&M - new O\&M) } \\
& +(\text { old other - new other })
\end{aligned}
$$

Example
Annual cost savings

$$
\begin{aligned}
= & (\$ 176000-\$ 132000) \\
& +(\$ 2500-\$ 5000) \\
& +(\$ 0-\$ 0) \\
= & \$ 41500
\end{aligned}
$$

Annual Savings
Discount Rate
Analysis period (years)
Residual value

$\$ 41500$

Enter in appropriate input cell.

Step 4 - Choose Discount Rate

- Choose a discount rate $r=12 \%$
(from lender interest rate)
- Enter discount rate in appropriate input cell.

Annual Savings
Discount Rate
Analysis period (years)
Residual value

Step 5 - Choose Analysis Period

- Choose analysis period T = 15 years.
- Enter analysis period in appropriate input cell.

Annual Savings
Discount Rate
Analysis period (years)
Residual value

Step 6 - Estimate Residual Value of Equipment

- What is equipment worth at end of analysis period?
- Rule of thumb: Residual value $=10 \%$ of purchase price
- Residual value acts as a credit to the project in the final year.
- Estimate residual value $=\$ 16000$
- Enter residual value in appropriate input cell.

Annual Savings
Discount Rate
Analysis period (years)
Residual value

Step 7 - Calculate Present Value of Annual Savings

Let: $\mathrm{PV}_{\mathrm{AS}}$	$=$	Total present value of all annual savings
T	$=$ Total number of the years in the analysis	
AS_{t}	$=$ Annual savings in the year t	

- For each year:

PV of savings = year's savings divided by (1+ discount rate)
raised to the power of the year when the savings occur

- Total PV of savings during analysis period is the sum of all annual PVs.
$P V_{A S}=\sum_{t=1}^{T} A S_{t} * \frac{1}{(1+r)^{t}}=A S_{1} * \frac{1}{(1+r)^{1}}+A S_{2} * \frac{1}{(1+r)^{2}}+\ldots+A S_{15} * \frac{1}{(1+r)^{15}}$

Step 7 - Calculate Present Value of Annual Savings

$$
\begin{aligned}
& \text { For } T=15 \text { years } \\
& P V_{A S}=\$ 28265 \mathrm{I}
\end{aligned}
$$

Year

Annual Savings PV Annual Savings Σ PV Annual Savings

0	1	2	3	4
$\$ 0$	$\$ 41500$	$\$ 41500$	$\$ 41500$	$\$ 41500$
$\$ 0$	$\$ 37054$	$\$ 33084$	$\$ 29539$	$\$ 26374$
$\$ 282651$				

\ldots	13	14	15
	$\$ 41500$	$\$ 41500$	$\$ 41500$
	$\$ 9511$	$\$ 8492$	$\$ 7582$

Step 9
Calculate Net Present Value (NPV)

- The net present value (NPV) of a project is its life cycle net savings.
- It is the absolute monetary value of a project.
- $N P V=P V_{A S}-P V_{1}$

$$
\text { Example } \quad \begin{aligned}
\text { NPV } & =\$ 28265 \mathrm{I}-\$ 58 \mathrm{I} 05 \\
& =\$ 224546
\end{aligned}
$$

- NPV shows the total potential earnings of a project.
- NPV considers the effect of interest on future net savings.
- If NPV > 0, a project is profitable (economically feasible).
- NPV is a major decision making tool for project owners.

Step 10a - Calculate Savings-toInvestment Ratio (SIR)

- Savings-to-investment ratio (SIR)
$=$ present value of savings / present value of investments
$=P V_{A S} / P V_{1}$

Example \quad SIR $=\$ 28265$ I / \$58 105

$$
=4,9
$$

- If SIR > I,0 a project is profitable (economically feasible).
- SIR may also be important for project owners.

Step 10b - Calculate Internal Rate of Return (IRR)

- IRR is a hypothetical discount rate that causes $\operatorname{SIR}=I, 0$ or NPV $=0$.
- IRR requires an iterative calculation, easy for a computer.
- If the IRR \geq the discount rate used in the analysis, the investment is worthwhile (economically feasible).
- A high IRR earns more profit per investment dollar.
- IRR is a major decision making tool for lenders, usually the first question they ask.
- Investors may each arbitrarily set their own minimum acceptable IRR, called a "hurdle rate."

Outputs

- A positive NPV (net present value) shows how much money the project will make in its lifetime.
- A negative NPV shows how much money a project will lose.
- NPV shows a project's absolute feasibility in terms of money.
- Example: NPV = \$ 224546

Outputs (cont.)

- $\operatorname{SIR}=4,9$
- The SIR (savings-to-investment ratio) is the same as a benefit / cost ratio.
- With SIR > I,0 the project makes more money than it costs.
- With SIR < I,0 the project costs more than it makes. SIR shows a project's relative feasibility.

Outputs (cont.)

- $\operatorname{IRR}=42 \%$
- IRR (internal rate of return) is the interest in percent that the project's investment will earn.
- Calculated by finding the theoretical discount rate for which NPV $=0$, or $S I R=I, 0$.
- Theoretically, any project with an IRR greater than the company's cost of capital is profitable (and will have positive NPV).
- Companies set "hurdle rates" for IRR. A hurdle rate is an arbitrary minimum IRR that the company will accept for implementing projects. Hurdle rates are normally higher than a company's cost of capital, so only higher profit projects are selected.

Outputs (cont.)

- SPB = 3,0
- Simple payback (SPB), expressed in years, does not discount its input or consider future re-investment costs. SPB is only useful for projects with very quick return.
- If a project can pay back in a year, for example, there is little need to calculate discounted future values.
- For longer paybacks, SPB becomes inaccurate.

Extra Reading:

- C. O. Okoye, U.Atikol.A parametric study on the feasibility of power plants in North Cyprus Conditions. Energy Conversion and Management 2014;Vol.80: pp I78187
- U. Atikol et al. A feasibility integrated approach in the promotion of solar house design. International Journal of Energy Research 20I3;Vol.37: pp378-388.

