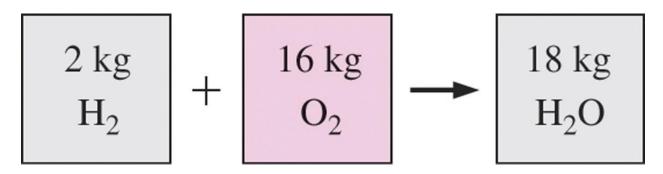
The First Law of Thermodynamics for Control Volumes

Conservation of mass: Mass, like energy, is a conserved property, and it cannot be created or destroyed during a process.

Closed systems: The mass of the system remain constant during a process.

Control volumes: Mass can cross the boundaries, and so we must keep track of the amount of mass entering and leaving the control volume.



Mass is conserved even during chemical reactions.

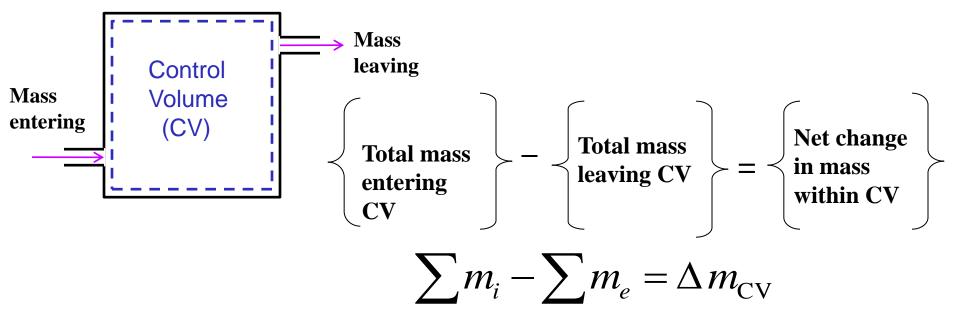
Mass m and energy E can be converted to each other according to $E = mc^2$

where c is the speed of light in a vacuum, which is $c = 2.9979 \times 10^8 \text{ m/s}.$

The mass change due to energy change is absolutely negligible.

Conservation of mass principle

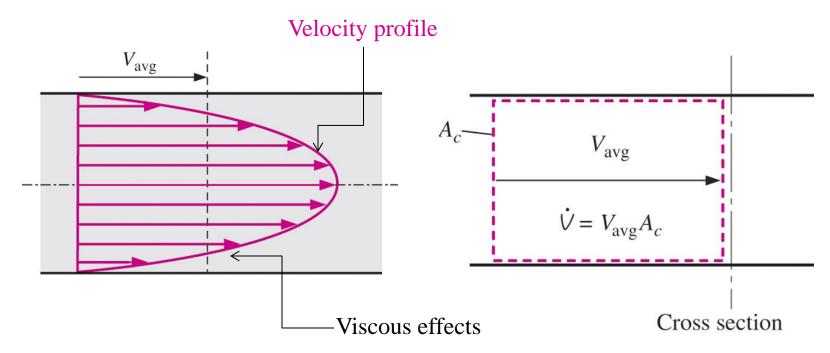
Control volume can be thought of a region of space through which mass flows.



Note: i-inlet, e-exit, CV-control volume

The rate form
$$\rightarrow \sum \dot{m}_i - \sum \dot{m}_e = \Delta \dot{m}_{\rm CV}$$
 where \dot{m} is mass flow rate, i.e $\frac{dm}{dt}$

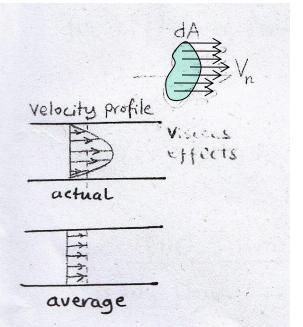
Flow through a pipe or duct



The average velocity $V_{\rm avg}$ is defined as the average speed through a cross section.

The volume flow rate is the volume of fluid flowing through a cross section per unit time.

The mass flow rate through a different area dA can be expressed as:



$$d\dot{m} = \rho V_n dA$$
Velocity normal to dA

$$\dot{m} = \int_{A} \rho V_n dA$$
 (kg/s)

$$\dot{m} = \rho V_{avg} A \quad (kg/s)$$

 $\dot{m} = \rho V_{avg} A$ (kg/s) density kg/m³ average fluid velocity normal to A, m/s

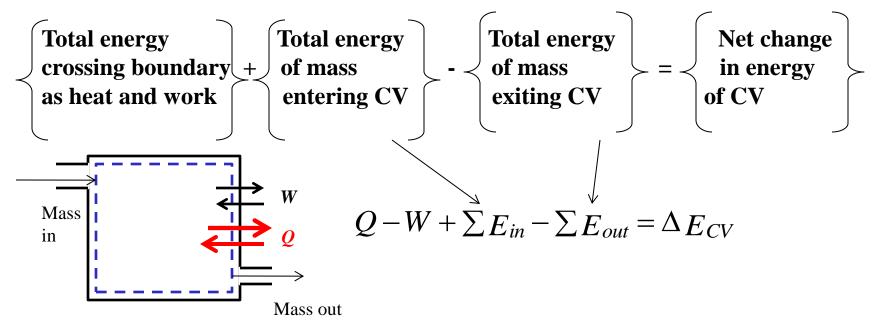
The **volume flow rate**:

$$\dot{V} = \int_{A} V_{n} dA = V_{av} A(\frac{m^{3}}{s})$$

The mass and volume flow rates are related by:

$$\dot{m} = \rho \dot{V} = \frac{\dot{V}}{v}$$

Conservation of Energy Principle



This equation can also be expressed in the rate form (i.e. quantities per unit time).

When there is no mass flow in and out of the system, the energy equation reduces to that of a closed system:

$$Q - W = \Delta E$$

Flow work or flow energy

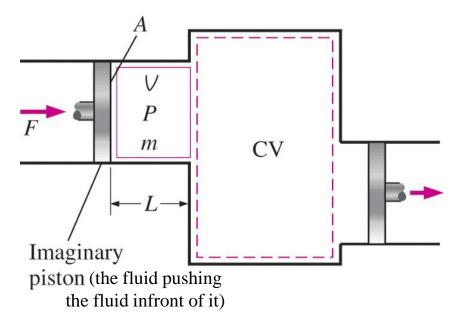
The energy required to push fluid into or out of a control volume.

The force applied on the fluid element : F = PA

The work done in pushing the fluid element into the control volume:

i.e. the flow work : $W_{flow} = FL = PAL = PV \text{ (kJ)}$

On a unit mass basis $w_{low} = Pv$ (kJ/kg)

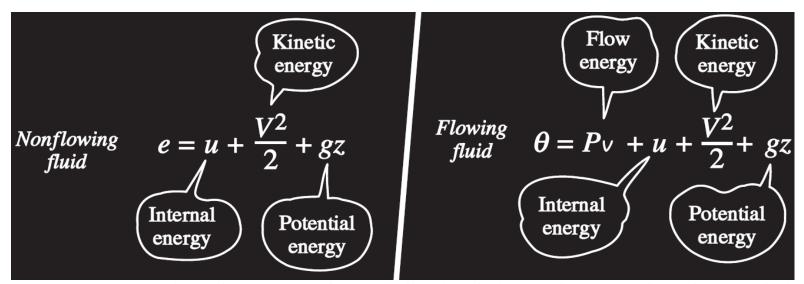


Total Energy of a flowing fluid

For a nonflowing fluid:
$$e = u + ke + pe = u + \frac{V^2}{2} + gz (kJ/kg)$$

For a flowing fluid the total energy
$$\theta = \mathbf{Pv} + \mathbf{e} = \mathbf{Pv} + \mathbf{u} + \frac{V^2}{2} + \mathbf{gz} (\mathbf{kJ/kg})$$

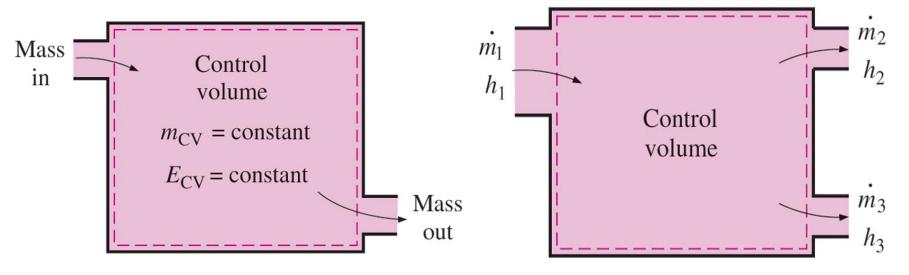
Hence
$$\theta = \mathbf{h} + \mathbf{ke} + \mathbf{pe} = \mathbf{h} + \frac{V^2}{2} + \mathbf{gz}$$
 (kJ/kg)



The total energy consists of three parts for a nonflowing fluid and four parts for a flowing fluid.

THE STEADY-FLOW PROCESS

Steady flow is defined such that all properties at each point in a system remain constant with respect to time. (e.g. turbines, compressors, and heat exchangers)



Under steady-flow conditions, the mass and energy contents of a control volume remain constant. Under steady-flow conditions, the fluid properties at an inlet or exit remain constant (do not change with time).

Conservation of mass

m_{cv} = constant for steady-flow process

$$\sum \dot{m}_i = \sum \dot{m}_e$$

If there is only one inlet and one exit

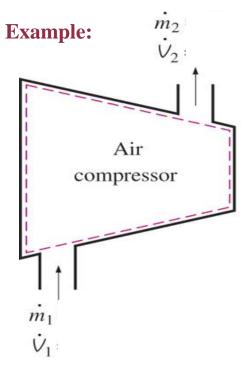
$$\dot{m}_1 = \dot{m}_2 \text{ (kg/s) or } \rho_1 V_1 A_1 = \rho_2 V_2 A_2 \text{ (or } \frac{1}{v_1} V_1 A_1 = \frac{1}{v_2} V_2 A_2 \text{)}$$

where
$$\rho = \text{density} (\text{kg/m}^3)$$

 $v = \text{specific volume (m}^3/\text{kg)}$

V = average velocity (m/s)

A = cross - sectional area normal to area (m²)



(or
$$\frac{1}{v_1}V_1A_1 = \frac{1}{v_2}V_2A_2$$

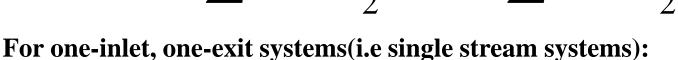
Conservation of energy for steady flow

$$E_{CV} = \text{constant}$$
 or $\Delta E_{CV} = 0$

$$\dot{Q} - \dot{W} = \sum \dot{E}_{out} - \sum \dot{E}_{in} + \Delta \dot{E}_{cv}$$

$$\Rightarrow \dot{Q} - \dot{W} = \sum \dot{m}_{e} \theta_{e} - \sum \dot{m}_{i} \theta_{i}$$

$$\Rightarrow \dot{Q} - \dot{W} = \sum \dot{m}_e (h_e + \frac{V_e^2}{2} + gz_e) - \sum \dot{m}_i (h_i + \frac{V_i^2}{2} + gz_i)$$



$$\dot{m}_{_{1}}=\dot{m}_{_{2}}$$

$$\dot{Q} - \dot{W} = \dot{m} \{ h_{2} - h_{1} + \frac{V_{2} - V_{1}}{2} + g(z_{2} - z_{1}) \}$$

$$\Delta h \qquad \Delta ke \qquad \Delta pe$$

Mass (and energy) in

Turbine

Heat

$$\Delta ke = \Delta pe = 0$$
$$\Rightarrow q - w = \Delta h$$

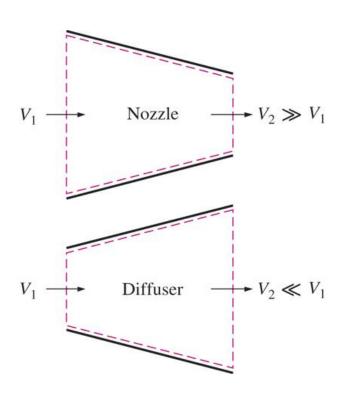
Work

Some Steady-Flow Engineering Devices

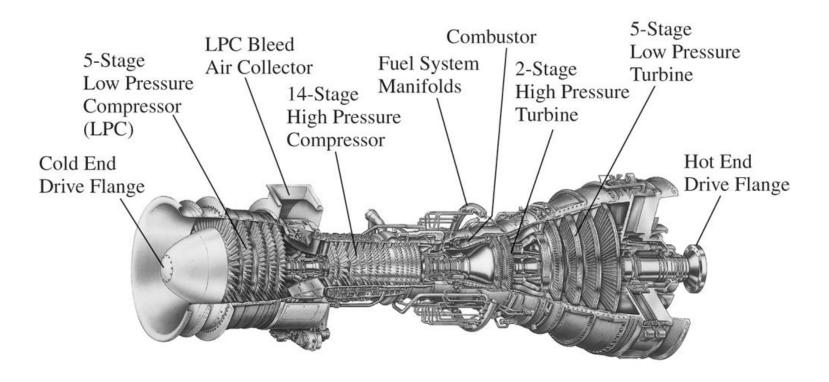
1.Nozzels and Diffusers

$$\vec{q} - \vec{w} = \Delta h + \Delta k e + \Delta p e$$

$$0 = h_2 - h_1 + \frac{V_2^2 - V_1^2}{2}$$



2. Turbines and compressors



A modern land-based gas turbine used for electric power production. This is a General Electric LM5000 turbine. It has a length of 6.2 m, it weighs 12.5 tons, and produces 55.2 MW at 3600 rpm with steam injection.

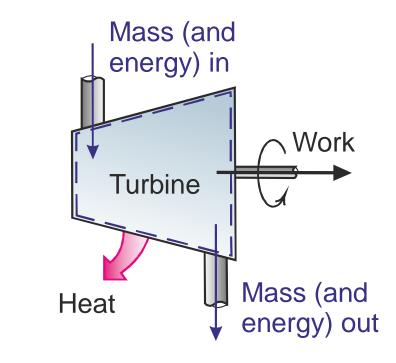
2. Turbines and compressors

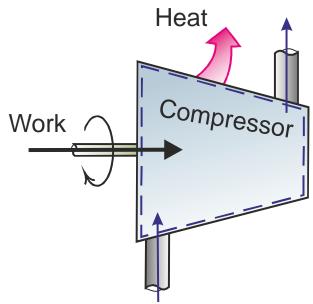
$$q - w = \Delta h + \Delta k e + \Delta p e$$

$$w = -(h_2 - h_1 + \frac{V_2^2 - V_1^2}{2})$$

$$q - w = \Delta h + \Delta k e + \Delta p e$$

$$q - w = h_2 - h_1$$





Ex: Steam turbine

For steady flow

$$\dot{m}_{_{\scriptscriptstyle 1}}=\dot{m}_{_{\scriptscriptstyle 2}}=\dot{m}$$

$$\dot{Q} - \dot{W} = \dot{m} \{ h_2 - h_1 + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) \}$$

$$\frac{\dot{Q}}{\dot{m}} - \frac{\dot{W}}{\dot{m}} + (h + \frac{V^2}{2} + gz)_1 - (h + \frac{V^2}{2} + gz)_2 = 0$$

$$\dot{m} = \frac{600 \frac{kg}{hr}}{3600 \frac{\text{sec}}{hr}} = 0.167 \frac{kg}{\text{sec}}$$

$$\dot{Q} = \frac{630 \frac{kg}{hr}}{3600 \frac{\sec}{hr}} = 0.175 kW$$

$$\dot{m} = 600 \text{ kg/h}$$
 $h_1 = 3120 \text{ kJ/kg}$
 $V_1 = 3 \text{ m/s}$
 $z_1 = 3 \text{ m}$

$$\dot{v}$$

$$\dot{Q} = 630 \text{ kJ/h}$$

$$h_2 = 2330 \text{ kJ/kg}$$

$$V_2 = 130 \text{ m/s}$$

$$z_2 = 0$$

$$-\frac{0.175 \frac{kJ}{s}}{0.167 \frac{kg}{s}} - \frac{\dot{W}}{0.167 \frac{kg}{s}} + (3120 \frac{kJ}{kg} + \frac{(100 \frac{m}{s})^{2}}{2(1000 \frac{J}{kJ})} + \frac{9.81 \frac{m}{s^{2}}}{1000 \frac{J}{kJ}}) - (2330 \frac{kJ}{kg} + \frac{(130 \frac{m}{s})^{2}}{2(1000 \frac{J}{kJ})} + 0) = 0$$

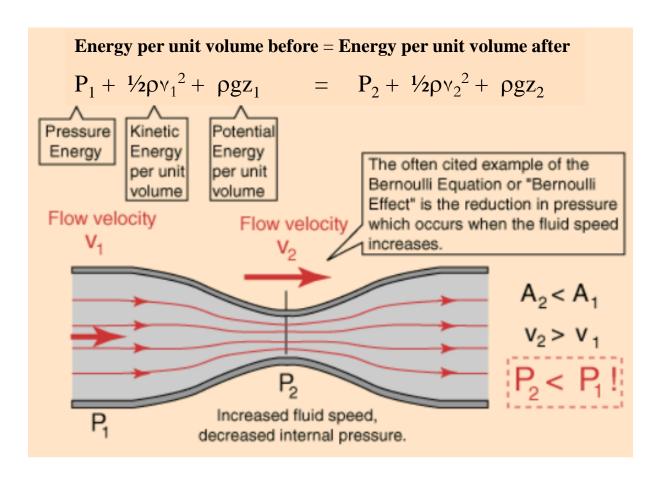
$$\Rightarrow -1.05 \frac{kJ}{kg} - \frac{\dot{W}}{0.167 \frac{kg}{g}} + (3120 \frac{kJ}{kg} + 5 \frac{kJ}{kg} + 0.029 \frac{kJ}{kg}) - (2330 + 8.45 + 0) = 0$$

$$\Rightarrow \dot{W} = +131.183kW$$

3.Throling Valves

Throttling valves are *any kind of flow-restricting devices* that cause a significant pressure drop in the fluid.

Why there is a pressure drop?



3. Throling Valves

What is the difference between a turbine and a throttling valve?

The pressure drop in the fluid is often accompanied by a *large drop in temperature*, and for that reason throttling devices are commonly used in refrigeration and air-conditioning applications.

→ Energy balance

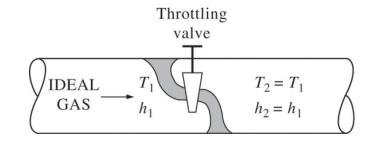
$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

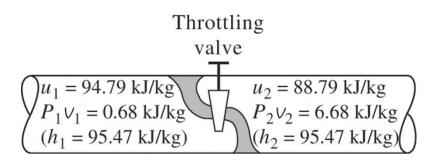
$$A'' - W'' = \Delta h + \Delta k e' + \Delta p e'$$

$$\Rightarrow h_2 = h_1$$

$$u_1 + P_1 v_1 = u_2 + P_2 v_2$$

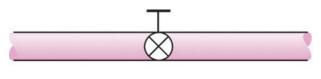
Internal energy + Flow energy = Constant





During a throttling process, the enthalpy of a fluid remains constant. But internal and flow energies may be converted to each other.

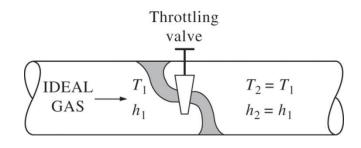
3. Throttling Valves



(a) An adjustable valve

(b) A porous plug

(c) A capillary tube



$$h_2 \cong h_1$$

$$u_1 + P_1 v_1 = u_2 + P_2 v_2$$

Internal energy +flow =const.

If P_{ν} increase then u_2 decreases \longrightarrow drop in temperature

If P_1V_1 decrease then u_1 increases \longrightarrow increase in temperature For an ideal gas, h=h(T) and since $h_1 = h_2$, the temperature does not change $T_1 = T_2$.

4. Heat exchangers

Mass flow rate of fluid A:

Mass flow rate of fluid B: $\dot{m}_{i} = \dot{m}_{e} = \dot{m}_{A}$

$$\dot{m}_{\scriptscriptstyle e} = \dot{m}_{\scriptscriptstyle e} = \dot{m}_{\scriptscriptstyle B}$$

Energy equation for blue CV:

$$\dot{Q} - \dot{W} = \sum \dot{m}_{e} (h_{e} + \frac{V_{e}^{2}}{2} + gz_{e}) - \sum \dot{m}_{i} (h_{i} + \frac{V_{i}^{2}}{2} + gz_{i})$$

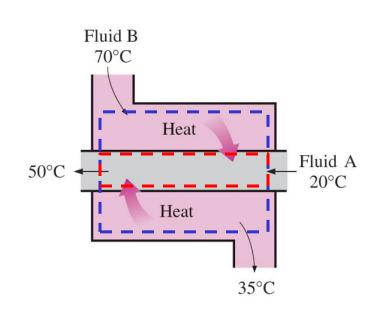
$$\sum \dot{m}_{\scriptscriptstyle i} h_{\scriptscriptstyle i} = \sum \dot{m}_{\scriptscriptstyle e} h_{\scriptscriptstyle e}$$

$$\dot{m}_{\scriptscriptstyle B}h_{\scriptscriptstyle Bi}+\dot{m}_{\scriptscriptstyle A}h_{\scriptscriptstyle Ai}=\dot{m}_{\scriptscriptstyle B}h_{\scriptscriptstyle Be}+\dot{m}_{\scriptscriptstyle A}h_{\scriptscriptstyle Ae}$$

Energy equation for red CV: \rightarrow single stream

$$\dot{Q} - \dot{W}^{0} = \dot{m}_{A}(\Delta h + \Delta k e + \Delta p e)$$

$$\dot{Q} = \dot{m}_{A}(h_{2} - h_{1})$$



5.Mixing Chambers

$$\sum_{i} \dot{m}_{i} = \sum_{i} \dot{m}_{2}$$

$$\dot{m}_{1} + \dot{m}_{2} = \dot{m}_{3} \rightarrow \frac{\dot{m}_{1}}{\dot{m}_{2}} + 1 = \frac{\dot{m}_{3}}{\dot{m}_{2}}$$

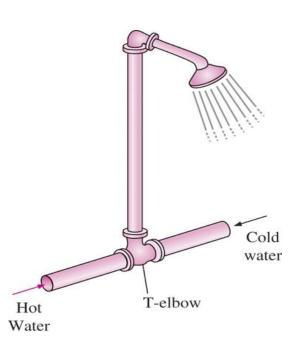
$$\dot{Q} - \dot{W} = \sum_{i} \dot{m}_{e} (h_{e} + \frac{\dot{V}_{e}^{2}}{2} + g\dot{z}_{e}) - \sum_{i} \dot{m}_{i} (h_{i} + \frac{\dot{V}_{e}^{2}}{2} + g\dot{z}_{i})$$

$$\sum_{i} \dot{m}_{i} h_{i} = \sum_{i} \dot{m}_{e} h_{e}$$

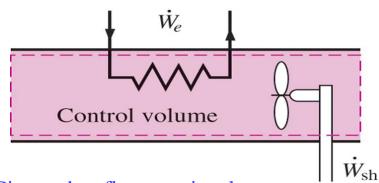
$$\dot{m}_{1} h_{1} + \dot{m}_{2} h_{2} = \dot{m}_{3} h_{3}$$

Divide by
$$\dot{m}_2$$
 and let $y = \frac{\dot{m}_1}{\dot{m}_2}$: $y h_1 + h_2 = (y+1) h_3$

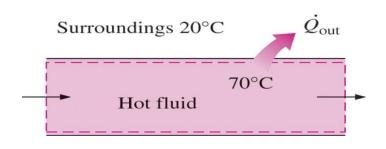
The T-elbow of an ordinary shower serves as the mixing chamber for the hot- and the cold-water streams.



6.Pipe and Duct Flow



Pipe or duct flow may involve more than one form of work at the same tim



Heat losses from a hot fluid flowing through an uninsulated pipe or duct to the cooler environment may be very significant.

$$\dot{Q} - \dot{W} = \dot{m} (\Delta h + \Delta ke + \Delta pe)$$

$$\dot{Q} - \dot{W} = \dot{m} (h_2 - h_1)$$

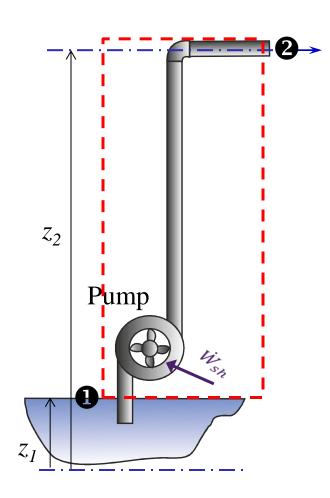
When air treated as ideal gas

$$v_{1} = \frac{RT_{1}}{P_{1}}$$

$$\dot{m} = \frac{\dot{V}_{1}}{V_{1}}$$

$$\Rightarrow \dot{Q} - \dot{W}_{1} = \dot{m}C_{p}(T_{2} - T_{1})$$

$$(-\dot{W}_{e} - W_{sh})$$



$$\dot{m} = \rho \dot{V} \qquad (\frac{kg}{s})$$

$$V_{1} = \frac{\dot{m}}{\rho_{1} A_{1}} \qquad (\frac{m}{s})$$

$$V_{2} = \frac{\dot{m}}{\rho_{2} A_{2}} \qquad (\frac{m}{s})$$

Enthalpy change for incompressible substance:

$$h_{2} - h_{1} = (u_{2} + P_{2}v_{2}) - (u_{1} + P_{1}v_{1})$$

$$= (u_{2} - u_{1}) + v(P_{2} - P_{1})$$

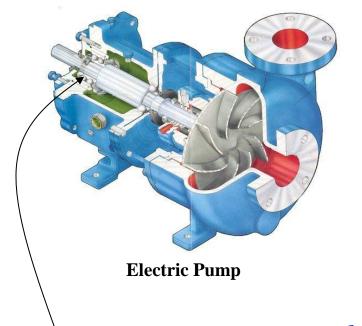
$$= C(T_{2} - T_{1}) + v(P_{2} - P_{1})$$

$$\Delta u$$

Energy equation becomes:

$$\dot{Q} - \dot{W}_{sh} = \dot{m} \{ C (T_2 - T_1) + v (P_2 - P_1) + \frac{g_2^2 - g_1^2}{2} + g (z_2 - z_1) \}$$

Energy Equation:
$$\dot{Q} - \dot{W}_{sh} = \dot{m} \left\{ C(T_2 - T_1) + v(P_2 - P_1) + \frac{{\vartheta_2}^2 - {\vartheta_1}^2}{2} + g(z_2 - z_1) \right\}$$



Electric motor

Electric power

When \dot{Q} is neglible and $T_1 = T_2$:

$$\rightarrow \dot{W}_{sh} = \dot{m} \left\{ v(P_2 - P_1) + \frac{{\vartheta_2}^2 - {\vartheta_1}^2}{2} + g(z_2 - z_1) \right\}$$

In the case of negligible changes of kinetic and potential energies:

$$\rightarrow \dot{W}_{sh} \approx \dot{V}\{(P_2 - P_1)\}$$

Definition of pump efficiency:

Discharge

Inlet

 $\dot{V}(P_2 - P_1)$ Power delivered to the fluid

Impeller -

Driven Shaft

Shaft power

$$\eta_{pump} = \frac{\text{Water (output) Power}}{\text{Shaft (input) Power}} = \frac{\dot{V}(\frac{\text{m}^3}{\text{S}}) \times (P_2 - P_1) \text{kPa}}{\dot{W}_{sh}(\text{kW})}$$

$$\eta_{motor} = \frac{\dot{W}_{Sh}}{\dot{W}_{el}}$$

The overall pump efficiency:

$$\eta_{\mathrm{ov}} = \eta_{\mathit{pump}} \times \eta_{\mathit{motor}}$$

Electric power consumption:

$$\dot{W}_{el} = \frac{\dot{W}_{sh}}{\eta_{motor}} = \frac{\dot{V} \times (P_2 - P_1)}{\eta_{motor}\eta_{pump}}$$