MENG541 Advanced Thermodynamics **CHAPTER 4 – EXERGY AND EXERGY ANALYSIS** Instructor: Prof. Dr. Uğur Atikol

Chapter 4

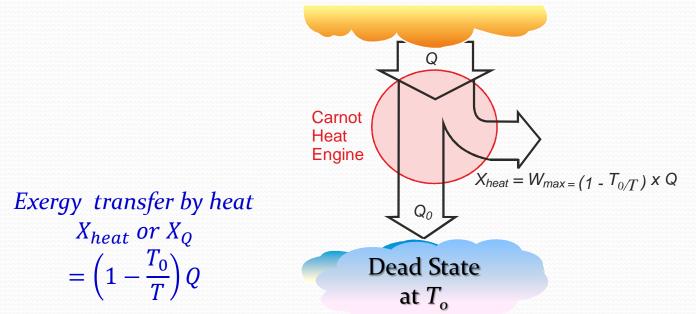
Exergy and Exergy Analysis

Outline

- Fundamentals on Exergy
- Exergy Associated with KE and PE
- Irreversibility (Exergy Destruction)
- Second Law Efficiency
- Nonflow Exergy
- Exergy of a Flow stream
- Exergy by Heat, Work and Mass
- Exergy Balance

Exergy: Work Potential of Energy

- The exergy of a system is defined as the maximum shaft work that can be achieved by both the system and a specified reference environment
- Therefore exergy is a property of both the system and the environment
 Heat Source at T



Revision of Fundamentals

- Work = *f* (initial state, process path, final state)
- The specified *initial state* is constant
- Maximum work is obtained from reversible process
- To maximize the work output, final state = *dead state*
- Dead state means thermodynamic equilibrium of the system with the environment
- Exergy is destroyed whenever an *irreversible* process occurs
- Exergy transfer associated with *shaft work* is equal to the shaft work
- Exergy transfer associated with *heat transfer* is dependent on the temperature of process in relation to the temperature of the environment

Exergy Associated with KE and PE

- Kinetic and potential energies are forms of *mechanical energy*
- Hence they can be converted to work entirely, i.e. The work potential or exergy are themselves:

exergy of kinetic energy: $x_{ke} = ke = \frac{\gamma^2}{2}$ exergy of potential energy: $x_{pe} = pe = g z$

Exergy Associated with Electricity

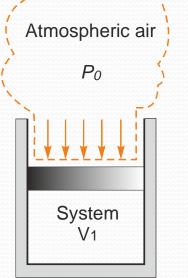
- Just like shaft work, exergy associated with *electricity* is equal to electric energy itself.
- Hence, electric energy W_{el} and power \dot{W}_{el} can be converted directly to X_{el} and \dot{X}_{el} respectively:

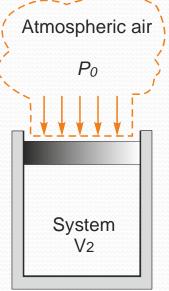
exergy of electric energy: $x_{el} = w_{el}$ exergy power: $\dot{x}_{el} = \dot{w}_{el}$

Surroundings Work

- Work produced by a work producing device (that involve moving boundary) is not always completely usable
- Work done by or against the surroundings is known as surroundings work, W_{surr}
- In a piston-cylinder device some work is used to push the atmospheric air out of the way
- In this example: $W_{surr} = P_0 (V_2 - V_1)$
- Useful work:

$$W_u = W - W_{surr}$$
$$= W - P_0 (V_2 - V_1)$$





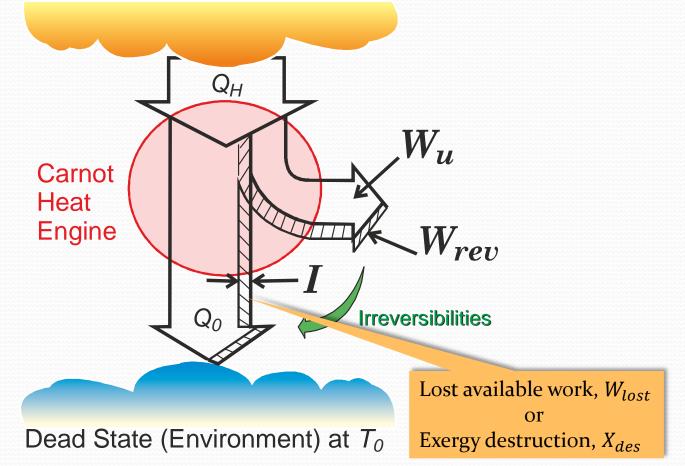
Irreversibility (exergy destruction)

- Reversible work (W_{rev}) is defined as the maximum useful work that can be generated (or the minimum work that needs to be supplied) during a process
- When the final state of the process is the dead state then
 W_{rev} = Exergy = X
- The useful work (W_u) obtained in work producing devices is less than W_{rev} due to the **irreversibilities**
- Irreversibility is viewed as the lost opportunity to do work
- Irreversibilities (I) cause exergy destruction

•
$$I = X_{des} = W_{rev,out} - W_{u,out}$$
 or $W_{u,in} - W_{rev,in}$

I or X_{des} from a Heat Source

High Temperature Reservoir at T_H



I or X_{des} of a Heat Engine $\dot{W}_{rev} = \eta_{th,rev}\dot{Q}_{in} = \left(1 - \frac{T_L}{T_H}\right)\dot{Q}_{in}$ $\dot{W}_{rev} = \left(1 - \frac{300 \text{ K}}{1200 \text{ K}}\right)(500 \text{ kW}) = 375 \text{ kW}$ The rate of irreversibility or exergy destruction: $\dot{X}_{des} = \dot{I} = \dot{W}_{rev} - \dot{W}_u = 375 - 180 = 195 \text{ kW}$

$$Q_{L} \qquad \dot{Q}_{L,total} = \dot{Q}_{H} - \dot{W}_{u} = 500 - 180 = 320 \text{ kW}$$

$$\dot{Q}_{L,total} = \dot{Q}_{H} - \dot{W}_{rev} = 500 - 375 = 125 \text{ kW}$$

$$\dot{Q}_{L,total} \qquad \dot{I} \text{ or } \dot{X}_{des}$$

$$\dot{I} = 320 - 125 = 195 \text{ kW}$$

$$\dot{I} = 320 - 125 = 195 \text{ kW}$$
This is not available for converting to work

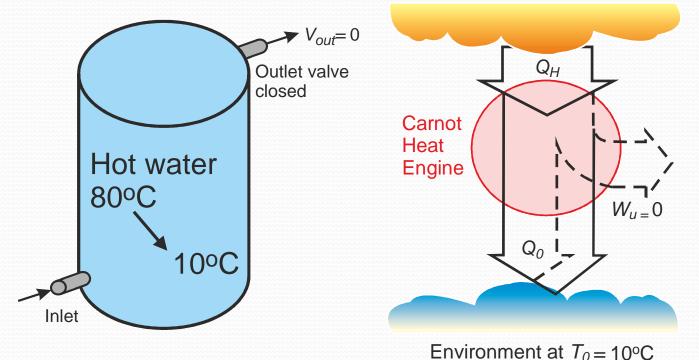
Example:

X_{des} from a Hot Water Tank

 When the water is not used the work potential is completely wasted

Exergy stored in the tank is completely destroyed, $I = X_{des} = W_{rev} - M_u = W_{rev}$

Hot Water Tank at $T_H = 80^{\circ}$ C

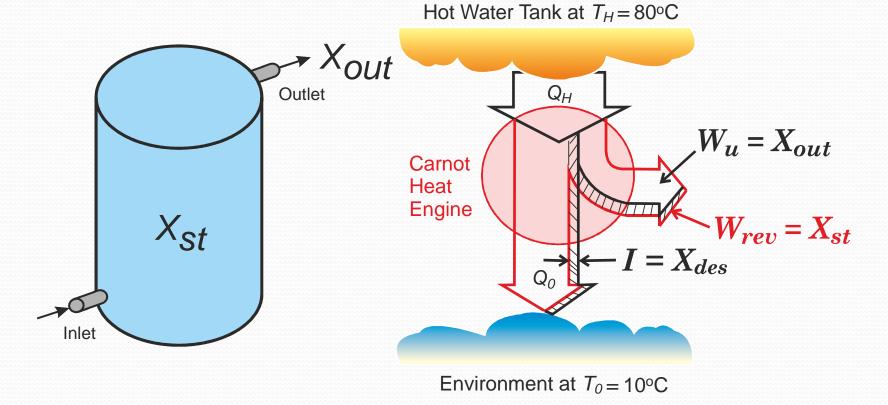


Example:

X_{des} from a Hot Water Tank

• When the water is used the *X*_{*des*} can be expressed as:

Exergy destroyed, $I = X_{des} = W_{rev} - W_u = X_{st} - X_{out}$



Second-Law Efficiency, η_{II}

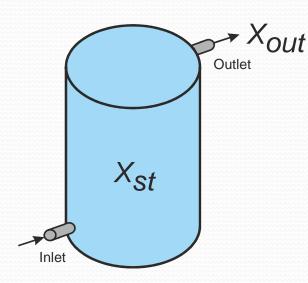
• Second-law efficiency is defined as the ratio of the actual thermal efficiency to the maximum possible (reversible) thermal efficiency under the same conditions:

• For heat engines:
$$\eta_{II} = \frac{\eta_{th}}{\eta_{th,rev}}$$

- For work producing devices: $\eta_{II} = \frac{W_u}{W_{rev}}$
- For work consuming devices: $\eta_{II} = \frac{W_{rev}}{W_{II}}$
- For refrigerators and heat pumps: $\eta_{II} = \frac{COP}{COP_{rev}}$

Hot Water Usage from a Tank

$$\eta_{II} = \frac{X_{out}}{X_{st}}$$



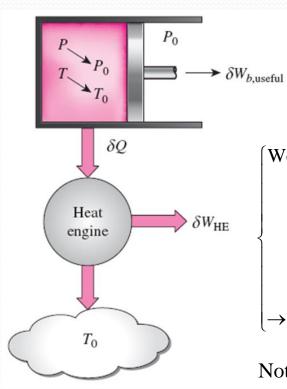
where X_{out} is the useful exergy extracted from the tank and X_{st} is the exergy stored in the tank

Also note that:

$$\eta_{II} = 1 - \frac{X_{des}}{X_{st}}$$

If all the stored exergy is destroyed, then $\eta_{II} = 0$ If no exergy destruction takes place (reversible case) then $\eta_{II} = 1$ (maximum). This means that $W_u = W_{rev}$

Nonflow Exergy: Exergy of a fixed mass



Any useful work is due to pressure above atmospheric pressure : $\rightarrow \delta W = P dV$

$$=\underbrace{(P-P_0)\,dV}_{\delta W_{k}}+P_0\,dV$$

Work potential due to heat transfer :

 $\rightarrow \delta W_{HE} = \left(1 - \frac{T_0}{T}\right) \delta Q$ $= \delta Q - \frac{T_0}{\underbrace{T}_{-T_0 dS}} \delta Q$ $\rightarrow \delta Q = \delta W_{HE} - T_0 dS$

Note that : $\delta W_{\text{total useful}} = \delta W_{HE} + \delta W_{b,useful}$ Substitute δQ and δW in the energy equation : $-\delta Q - \delta W = dU$ $\rightarrow -(\delta W_{HE} - T_0 dS) - (\delta W_{b,useful} + P_0 dV) = dU$ $\rightarrow -\delta W_{\text{total useful}} + T_0 dS - P_0 dV = dU$ $\rightarrow \delta W_{\text{total useful}} = -dU - P_0 dV + T_0 dS$

Nonflow Exergy: Exergy of a fixed mass

Equation obtained :

$$\rightarrow \delta W_{\text{total useful}} = -dU - P_0 dV + T_0 dS$$

Integrating from given state to dead state (0 subscript):

$$\rightarrow \underbrace{W_{\text{total useful}}}_{\text{Availability or Exergy}} = (U - U_0) + P_0(V - V_0) - T_0(S - S_0)$$

On a unit mass basis the nonflow exergy can be expressed as :

$$\rightarrow \phi = (u - u_0) + P_0(v - v_0) - T_0(s - s_0)$$

Including the kinetic energy and potential energy terms

$$\rightarrow \phi = (u - u_0) + P_0(v - v_0) - T_0(s - s_0) + \frac{1}{2}\gamma^2 + gz$$

where g is gravitational acceleration, γ is velocity and z is elevation. The exergy change of a nonflow system (from state 1 to 2):

$$\Delta \phi = \phi_2 - \phi_1 = (u_2 - u_1) + P_0(v_2 - v_1) - T_0(s_2 - s_1) + \frac{1}{2}(\gamma_2^2 - \gamma_1^2) + g(z_2 - z_1)$$

= $(e_2 - e_1) + P_0(v_2 - v_1) - T_0(s_2 - s_1)$
where *e* is $(u + \gamma^2/2 + gz)$

Nonflow Exergy: Exergy of a fixed mass

For incompressible substances it is recalled that :

$$du = cdT$$
, $dv = 0$ and $ds = \frac{c}{T}dT$

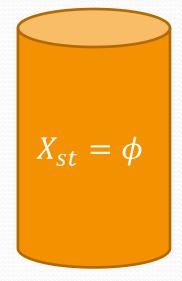
For example, the nonflow exergy of a full tank of hot water can be evaluated from :

$$\rightarrow \phi = (u - u_0) + P_0(v - v_0) - T_0(s - s_0)$$
$$= (u - u_0) - T_0(s - s_0)$$

where u is the total specific internal energy

and s is the total specific entropy in the tank. Note 1: Suffix "0" denotes the dead state.

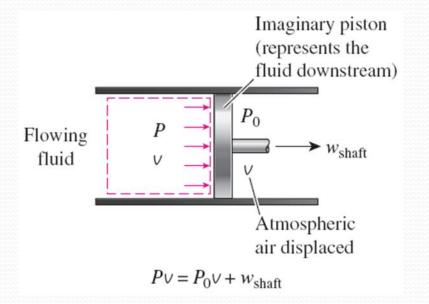
Note 2 : Nonflow exergy is the exergy stored in the tank, therefore $X_{st} = \phi$

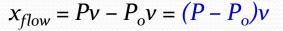


Flow Exergy: Exergy of a flow stream

For flowing fluids **flow energy** or **flow work** was defined before. This is the energy needed to maintain flow in a control volume, such that $w_{flow} = Pv$.

The flow work is done against the fluid upstream in excess of the boundary work against the atmosphere such that exergy associated with this flow work:





The exergy associated with flow energy is the useful work that would be delivered by an imaginary piston in the flow section.

Flow Exergy: Exergy of a flow stream

Exergy of a flow stream :

 $x_{\text{flowing fluid}} = x_{\text{nonflowing fluid}} + x_{\text{flow}}$

$$= (u - u_0) + P_0(v - v_0) - T_0(s - s_0) + \frac{1}{2}\gamma^2 + gz + (P - P_0)v$$

$$= (u + Pv) - (u_0 + Pv_0) - T_0(s - s_0) + \frac{1}{2}\gamma^2 + gz$$

$$= (h - h_0) - T_0(s - s_0) + \frac{1}{2}\gamma^2 + gz$$

Therefore exergy for a flow stream :

$$\rightarrow \psi = (h - h_0) - T_0(s - s_0) + \frac{1}{2}\gamma^2 + gz$$

The exergy change of a fluid stream (from state 1 to 2):

$$\rightarrow \Delta \psi = \psi_2 - \psi_1 = (h_2 - h_1) - T_0(s_2 - s_1) + \frac{1}{2}(\gamma_2^2 - \gamma_1^2) + g(z_2 - z_1)$$

Example: Exergy change during a

compression process

Refrigerant 134a is to be compressed from 0.14 MPa and -10° C to 0.8 MPa and 50° C.

Environment conditions are 20°C and 95 kPa.

Inlet state :

$$P_1 = 0.14 \text{ MPA}$$

 $T_1 = -10^{\circ} \text{ C}$ $h_1 = 246.36 \text{ kJ/kg} \text{ and } s_1 = 0.9724 \text{ kJ/kg} \cdot \text{K}$

Exit state :

$$P_1 = 0.8 \text{ MPA}$$

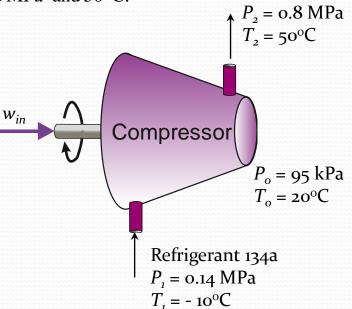
 $T_1 = 50^{\circ} \text{ C}$ $h_1 = 286.69 \text{ kJ/kg} \text{ and } s_1 = 0.9802 \text{ kJ/kg} \cdot \text{K}$

The exergy change of the refrigerant is determined from :

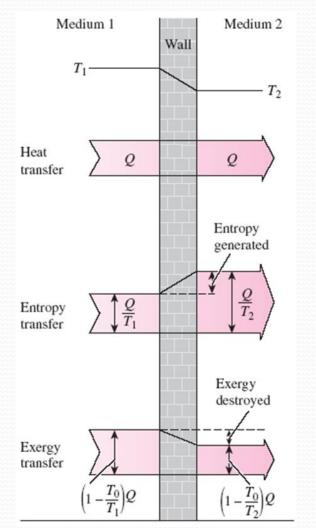
$$\Delta \psi = \psi_2 - \psi_1 = (h_2 - h_1) - T_0(s_2 - s_1) + \frac{1}{2}(\gamma_2^2 - \gamma_1^2) + g(z_2 - z_1)$$

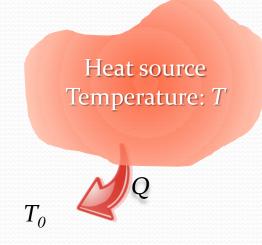
= $(h_2 - h_1) - T_0(s_2 - s_1)$
= $(286.69 - 246.36) \text{ kJ/kg} - (293 \text{ K})\{(0.9802 - 0.9724) \text{ kJ/kg} \cdot \text{K}\}$
= 38.0 kJ/kg

This represents the minimum work input $(w_{in,min})$ required to compress the refrigerant to the specified state.



Exergy transfer by heat, X_O





The maximum work can be obtained by a carnot engine :

 $X_{Q} = \left(1 - \frac{T_{0}}{T}\right) Q \begin{cases} \text{Exergy transfer} \\ \text{by heat} \end{cases}$

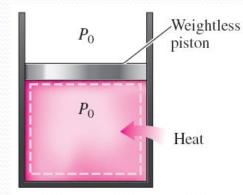
When temperature is not constant :

$$X_Q = \int \left(1 - \frac{T_0}{T}\right) \delta Q$$

Exergy transfer by work, X_W

 $X_{W} \begin{cases} W - W_{surr} & \text{(for boundary work)} \\ W & \text{(for other forms of work)} \end{cases}$

Note that $W_{surr} = P_0(V_2 - V_1)$



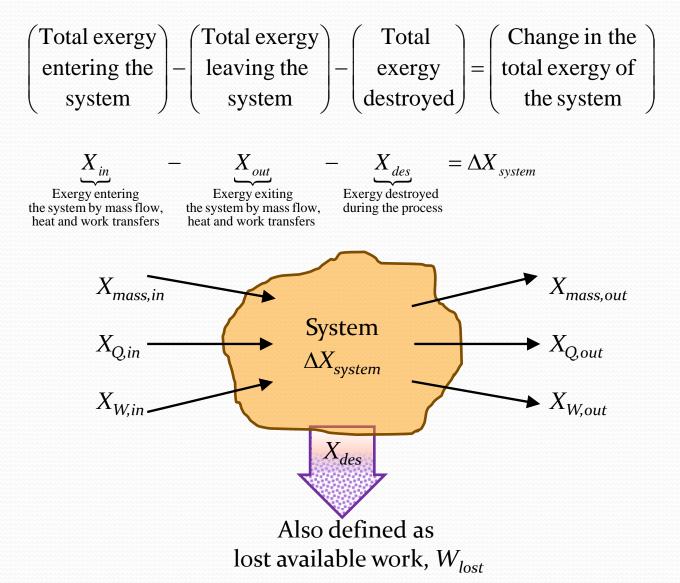
There is no useful work transfer associated with boundary work when the pressure of the system is maintained constant at atmospheric pressure.

Exergy transfer by mass, X_{mass}

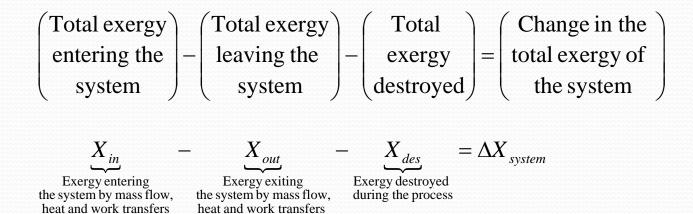
When mass, *m*, enters or leaves a system the amount of exergy that accompanies it:

$$X_{mass} = m \psi$$

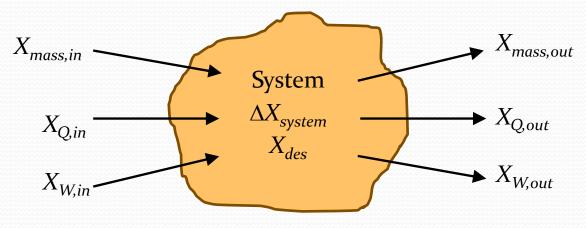
Mechanisms of Exergy Balance



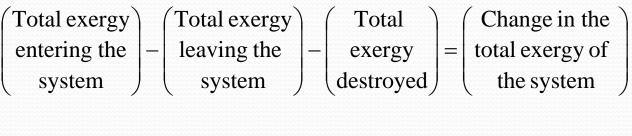
Exergy Balance: Closed Systems

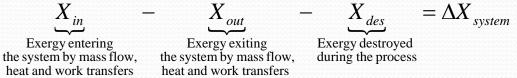


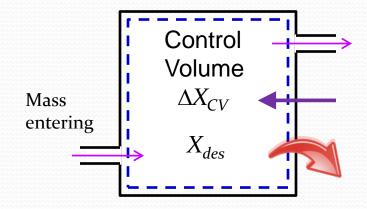
A closed system does not involve any mass flow



Exergy Balance: Control Volumes



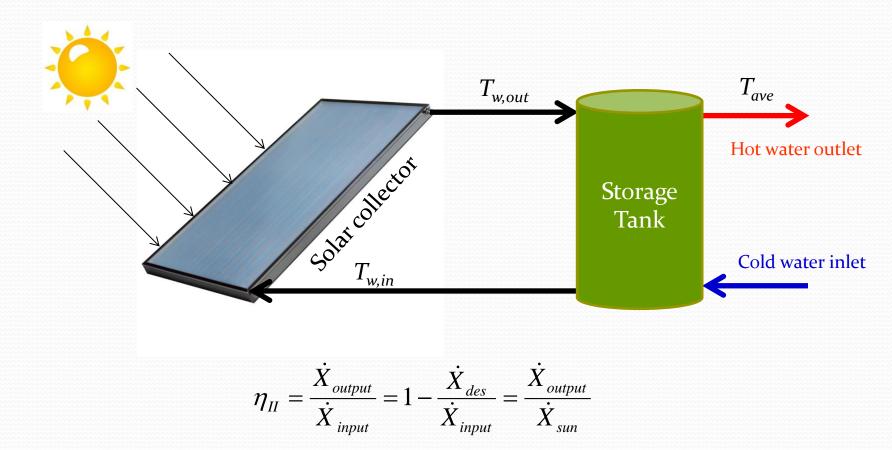




Procedure for Exergy Analysis

- Subdivide the process under consideration into sections as desired
- Conduct conventional energy analysis
- Select a reference environment
- Evaluate energy and exergy values relative to the environment
- Set up the exergy balance and determine exergy destruction
- Define first and second law efficiencies of the system
- Interpretation of results and conclusions

Example: Solar Water Heating System from Hepbasli*



*Hepbasli A. Renewable and Sustainable Energy Reviews 2008;12

Solar Collector

The instantaneous exergy efficiency of solar collector :

 $\eta_{\rm II,col} = \frac{\text{Increased exergy of water}}{\text{Exergy of the solar radiation}} = \frac{\dot{X}_u}{\dot{X}_{col}}$ where

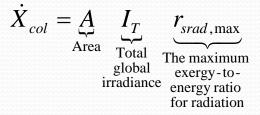
$$X_{u} = \dot{m}_{w}[(h_{w,out} - h_{w,in}) - T_{0}(s_{w,out} - s_{w,in})]$$

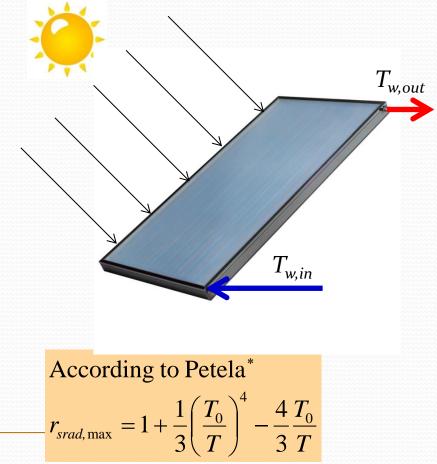
(Note that $s = da/T = CdT/T = C\ln T$)

$$\rightarrow = \dot{m}_{w}C_{w}\left\{ (T_{w,out} - T_{w,in}) - T_{0}\left(\ln\frac{T_{w,out}}{T_{w,in}}\right) \right\}$$

$$\rightarrow = \dot{Q}_u \left\{ 1 - \frac{T_0}{T_{w,out} - T_{w,in}} \left(\ln \frac{T_{w,out}}{T_{w,in}} \right) \right\}$$

and





*Petela R. Exergy of undiluted thermal radiation. Solar Energy 2003;74

Storage Tank

Exergy from the storage tank to the end-user as presented by Xiaowu et al*:

$$\dot{X}_{output} = \dot{m}_w C_w (T_{ave} - T_0) - \dot{m}_w C_w T_0 \left(\ln \frac{T_{top}}{T_0} - 1 \right) - \frac{T_{bottom} T_0 \dot{m}_w C_w}{T_{top} - T_{bottom}} \ln \left(\frac{T_{top}}{T_{bottom}} \right)$$

T_{w,out}

 T_{top}

Storage Tank

 T_{bottom}

 T_{ave}

Hot water outlet

Cold water inlet

Exergy from the collector to the storage tank as presented by Xiaowu et al*:

$$\dot{X}_{col \to \text{tank}} = \dot{m}_w C_w \left[(T_{w,out} - T_0) \right] - T_0 \left(\ln \frac{T_{w,out}}{T_0} \right)$$

*Xiaowu et al. Exergy analysis of domestic-scale solar water heatersRenewable and Sustainable Energy Reviews 2005;9