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Exergy: Work Potential of Energy 

 The exergy of a system is defined as the maximum 
shaft work that can be achieved by both the system 
and a specified reference environment 

 Therefore exergy is a property of both the system and 
the environment 
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Revision of Fundamentals 
 Work = f (initial state, process path, final state) 

 The specified initial state is constant 

 Maximum work is obtained from reversible process 

 To maximize the work output, final state = dead state 

 Dead state means thermodynamic equilibrium of the 
system with the environment 

 Exergy is destroyed whenever an irreversible process occurs 

 Exergy transfer associated with shaft work is equal to the 
shaft work 

 Exergy transfer associated with heat transfer is dependent 
on the temperature of process in relation to the 
temperature of the environment 

 

 



Exergy Associated with KE and PE 

 Kinetic and potential energies are forms of mechanical 
energy  

 Hence they can be converted to work entirely, i.e. The 
work potential or exergy are themselves: 
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Exergy Associated with Electricity 

 Just like shaft work, exergy associated with electricity is 
equal to electric energy itself.  

 Hence, electric energy 𝑊𝑒𝑙 and power 𝑊 𝑒𝑙  can be 
converted directly to 𝑋𝑒𝑙 and 𝑋 𝑒𝑙 respectively: 
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Surroundings Work 
 Work produced by a work producing device (that involve 

moving boundary) is not always completely usable 

 Work done by or against the surroundings is known as 
surroundings work, Wsurr 

 In a piston-cylinder device some work is used to push the 
atmospheric air out of the way 

 In this example:  

 

 Useful work: 

System
V1

System
V2

Atmospheric air

P0

Atmospheric air

P0

)( 120 VVPWsurr 

)( 120 VVPW

WWW surru







Irreversibility (exergy destruction) 
 Reversible work (Wrev) is defined as the maximum 

useful work that can be generated (or the minimum work 
that needs to be supplied) during a process 

 When the final state of the process is the dead state then 
Wrev = Exergy = X 

 The useful work (Wu) obtained in work producing 
devices is less than Wrev due to the irreversibilities 

 Irreversibility is viewed as the lost opportunity to do 
work 

 Irreversibilities (I) cause exergy destruction 

 I = Xdes = Wrev,out – Wu,out  or  Wu,in – Wrev, in 

 



I or Xdes from a Heat Source  
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Example:  

I or Xdes of a Heat Engine 

1200K 

300K 

180-kW 

500-kJ/s 





















)kW500(
K1200

K300
1

1,

rev

in

H

L
inrevthrev

W

Q
T

T
QW



 

375 kW 

 180375urevdes WWIX  195 kW 

The rate of irreversibility or exergy destruction: 

Example taken from Çengel 7th Ed. p.425 

totalLQ ,


desXI  or  

revLQ ,
kW  195125320

kW 125375500

kW 320180500

,

,







I

WQQ

WQQ

revHrevL

uHtotalL







This is not available for 
converting to work 



Example:  

Xdes from a Hot Water Tank 
 When the water is not used the work potential is 

completely wasted 
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Exergy stored in the tank is completely destroyed, I = Xdes = Wrev – Wu = Wrev 
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Example:  

Xdes from a Hot Water Tank 
 When the water is used the Xdes can be expressed as: 

Exergy destroyed, I = Xdes = Wrev – Wu =  Xst – Xout  

Inlet

Outlet

Xst
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Second-Law Efficiency, ηII 
 Second-law efficiency is defined as the ratio of the actual 

thermal efficiency to the maximum possible (reversible) 
thermal efficiency under the same conditions: 

 

 For heat engines: 

 

 For work producing devices:  

 

 For work consuming devices: 

 

 For refrigerators and heat pumps:  
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Example: 
Hot Water Usage from a Tank 
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where  Xout is the useful exergy extracted from the tank 
and Xst is the exergy stored in the tank 
 
Also note that: 
 
 
 
 
If all the stored exergy is destroyed, then ηII = 0  
If no exergy destruction takes place (reversible case) 
then ηII = 1 (maximum). This means that Wu = Wrev 
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Nonflow Exergy: Exergy of a fixed mass 
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Nonflow Exergy: Exergy of a fixed mass 
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Nonflow Exergy: Exergy of a fixed mass 
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Flow Exergy: Exergy of a flow stream 

The exergy associated with 
flow energy is the useful 

work that would be 
delivered by an imaginary 
piston in the flow section. 

For flowing fluids  flow energy  or  flow work  was defined before. 
This is the energy needed to maintain flow in a control volume,  
such that  wflow = Pv. 
 
The flow work is done against the fluid upstream in excess of the  
boundary work against the atmosphere such that exergy associated  
with this flow work: 

                                  xflow = Pv – P0v = (P – P0)v  



Flow Exergy: Exergy of a flow stream 
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Example: Exergy change during a 
compression process 
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This represents the minimum work input (win,min) required to compress the refrigerant 
to the specified state. 

Compressor

Refrigerant 134a 
P1 = 0.14 MPa 
T1 = - 10oC 

P2 = 0.8 MPa 
T2 = 50oC 

P0 = 95 kPa 
T0 = 20oC 

win 



Exergy transfer by heat, XQ 
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Exergy transfer by work, XW 
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There is no 
useful work 
transfer 
associated 
with boundary 
work when the 
pressure of the 
system is 
maintained 
constant at 
atmospheric 
pressure. 

Exergy transfer by mass, Xmass 
When mass, m, enters or leaves a system the amount of exergy that accompanies it: 

mX mass 



Mechanisms of Exergy Balance 

Xmass,in 
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XW,out 

   systemdesoutin XXXX 




































































process  theduring
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Exergy Balance: Closed Systems 
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process  theduring
destroyedExergy 
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A closed system does not involve any mass flow 
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Exergy Balance: Control Volumes 

   systemdesoutin XXXX 




































































process  theduring
destroyedExergy 
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Procedure for Exergy Analysis 

 Subdivide the process under consideration into sections as 
desired 

 Conduct conventional energy analysis 

 Select a reference environment 

 Evaluate energy and exergy values relative to the 
environment 

 Set up the exergy balance and determine exergy 
destruction 

 Define first and second law efficiencies of the system 

 Interpretation of results and conclusions 



Example: Solar Water Heating 
System from Hepbasli* 

Tave Tw,out 

Tw,in 

*Hepbasli A. Renewable and Sustainable Energy Reviews  2008;12 
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*Petela R. Exergy of undiluted thermal radiation. Solar Energy 2003;74 
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Storage 
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Cold water inlet 

Hot water outlet 

Exergy from the storage tank to the end-user as 
presented by Xiaowu et al*: 

Ttop 

Tbottom 

*Xiaowu et al. Exergy analysis of domestic-scale solar water heatersRenewable and Sustainable Energy Reviews  
2005;9 

Exergy from the collector to the storage tank as 
presented by Xiaowu et al*: 
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