
CHAPTER 5 – ENTROPY GENERATION 

Instructor: 

Prof. Dr. Uğur Atikol 



Chapter 5 
Entropy Generation (Exergy Destruction) 
Outline 

 Lost Available Work 

 Cycles 

 Heat engine cycles 

 Refrigeration cycles 

 Heat pump cycles  

 Nonflow Processes 

 Steady-Flow Processes 

 Exergy wheel diagrams 

 

 

 



System

in

out

Reservoir 
at T1

Reservoir 
at T2

Reservoir 
at Tn

...

Atmospheric temperature 
and pressure reservoir 

at ( ,PoTo )

Lost Available Work 

inm

outm
dt

dV
PWWu 0 

0Q

1Q 2Q nQ

0P

dt

dV
dt

dV
P0

(All modes of 
work transfer) 

uW

W

Atmosphere 

magneticshearelectrical WWW
dt

dV
PW 



 

atmosphere
eagainst th

doneWork 



Lost Available Work 

0
0

  
 out

n

i ini

i
gen smsm

T

Q

dt

dS
S 




  
 out

o
n

i in

o

i hmhmWQ
dt

dE


0

Note:       is known as methalpy, such that  

gz
V

hho 
2

2

oh

inm
outmSystem 

T1 T2 Tn 

T0 

W

0Q

1Q
2Q nQ

First law: 

Second law: 



Lost Available Work 

0
0

  
 out

n

i ini

i
gen smsm

T

Q

dt

dS
S 




  
 out

o
n

i in

o

i hmhmWQ
dt

dE


0

genlost

revlostgenrev

out

o
n

i in

o

i

i

rev

gen

gen

n

i out

o

in

o

i

i

STW

WWWSTWW

sThmsThmQ
T

T
STE

dt

d
W

S

STsThmsThmQ
T

T
STE

dt

d
W

Q













0

0

0

1

0
0

0

0

1

00
0

0

0

Hence

 that know however we   

:generally Therefore

)()(1)(

:hence zero, is  reversibleWhen 

)()(1)(

:equations  twoebetween th  Eliminate





























 

 





Also known as «exergy destruction Xdes» 
or «Irreversibility» 
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The main purpose of studying the lost available work is to diagnose the areas 
where irreversibilities are taking place in a prosess so that thermodynamic 
improvements can be made. 
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In most flow systems P0 dV/dt = 0, 
therefore ẊW = Ẇ  (i.e., exergy transfer 

by work is simply the work itself) 
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Lost available work is defined as the difference between the maximum available 
work Wrev  and the actual work W.  Alternatively it can be defined as: 

WrevWlost XXX   )(Same as Ẇlost Same as Ẋdes 
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Exergy balance  of the open system discussed can be shown on a flow diagram 
as follows: 
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Reversible Irreversible 
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Heat Engine Cycles 
Second-law efficiency of a heat-engine cycle can also be expressed 
as follows: 

revW

genL

revW

lostrevW

revW

W
II

X

ST

X

WX

X

X

)(
1

)(

)(

)(






















H

L
III

H

X

HLHII

H

QII

I

W

Q

W
II

H

I

T

T

Q

TTQ

Q

X

XW

X

X

Q

W

HQ

H

H

1

)1(
       

Therefore,   ) (i.e.,

it  with associatednsfer exergy tra  theas same  theis transfer  that workknow We

     and      








  

Relationship between first and second law efficiencies: 



Ambient 
TH 

 They are closed systems in communication with two heat 
reservoirs 

 (1) the cold space (at TL) from which refrigeration load 
QL is extracted 

 (2) the ambient (at TH) to which heat QH is rejected 
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Refrigeration Cycles 
Temperature -energy diagram for a refrigeration cycle proposed by Adrian Bejan  
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Refrigeration Cycles 
Energy conversion vs exergy destruction during a refrigeration cycle 
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Heat-Pump Cycles 
Energy conversion vs exergy destruction during a heat-pump cycle 
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Nonflow Processes 

Tn 
T2 T1 

Q1 Q2 Qn 
Closed 
system 

Cycles 
    W 
 
 
T0 



Nonflow Processes 

)()(

)()(

:fullin exergy  nonflow The

out. dropequation  original in the  termslast two  that theNote

)(

:as expressed becan  delivers

system closed amax work   thereservoir,only   theis atmosphere  When the

)(

000000

000000

exergy nonflow the
asknown  is This

0

1

021

vvPssTeeaa

VVPSSTEEAAΦ

AAX

STXAAX

revW

n

i

geniQW







 






The nonflow exergy is 
the reversible work 
delivered by a fixed-mass 
system during a process in 
which the atmosphere is 
the only reservoir. 



Steady-flow Processes 
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Steady-flow Processes 
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Remember the flow exergy from Chp 4 
The flow work is done against the fluid 
upstream in excess of the boundary work 
against the atmosphere such that exergy 
associated with this flow work: 

                       xflow = Pv – P0v = (P – P0)v 
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Steady-flow Processes 
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HOMEWORK 
 Determine (by drawing an exergy wheel diagram) the 

exergy flow with the associated exergy destruction 
components of each component of a simple vapor-
compression refrigeration cycle. Write down the 
exergy balance equations for each component and 
state any assumptions made. 
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