
 1

 ROSE: A Pr actical Higher-Order Functional/L ogic
Language

Zeki O. Bayram
Department of Computer

Engineering
Boðaziçi University

Bebek 80815
Istanbul

TURKEY

e-mail: bayram@boun.edu.tr

Barrett R. Bryant
Department of Computer and

Information Sciences
University of Alabama at

Birmingham
Birmingham, AL 35294-1170

U.S.A.

e-mail: bryant@cis.uab.edu

Ünal Altınay
Department of Computer

Engineering
Boðaziçi University

Bebek 80815
Istanbul

TURKEY

e-mail: altinay@boun.edu.tr

 Abstract

We present a higher-order functional/logic language, ROSE. The programs of ROSE are made
up of conditional constructor based term rewriting systems. The conditions in the rules can
optionally be committing. The operational semantics of the language is conditional narrowing,
augmented to deal with committing conditions. The major innovation of the language is the
use of committing guards and backtracking to make possible very practical, operationally
oriented programs. We show many practical examples, one of which is the definition of the
extra logical function not, which implements the negation-as-finite-failure rule in the context
of functional/logic programming.

Keywords: committing guards, conditional narrowing, e-unification, term rewriting systems,
non-determinism, functional/logic programming, practicality

1. Introduction
ROSE is a declarative functional/logic language designed to demonstrate that functional/logic
programming need not be seen only as a topic of academic interest, but rather that actually
useful programs can be written in this paradigm. ROSE can be likened in a sense to Prolog,
which demonstrated that theorem proving can also be used for computation and statements in
first order predicate calculus can be seen as programs to be executed. The success of Prolog
came about largely because of its pragmatist approach, which is most apparent in the inclusion
of extra-logical facilities, such as the built-in predicates assert, retract, and cut (which
controls backtracking), as well as somewhat ad-hoc higher-order features, such as the univ
and call predicates. Furthermore, Prolog's depth first search strategy of the resolution tree is

 2

incomplete. All these have features take us away from a purely declarative reading of Prolog
programs, but were necessary in order to obtain a usable programming language.

ROSE programs consist of conditional constructor based term rewriting systems (which
are not necessarily confluent) augmented with higher-order constructs (nameless functions in
the form of a kind of generalized lambda abstraction) and committing conditions (also called
guards). Operational semantics is conditional narrowing, where the narrowing tree is traversed
in a depth-first manner. It is possible to choose from an innermost or outermost narrowing
strategy, and switch between the two during execution as necessary. It is the interplay between
guards, non-confluent rewrite rules, non-determinism and backtracking which give ROSE
programs their brevity and expressive power. Admittedly, in the presence of this combination
of features, it is hard to talk about a declarative reading of ROSE programs (i.e. seeing rewrite
rules as conditional equality theories). However, as will be seen in the examples to follow, the
operational paradigm of computation that is the result of this interplay turns out to be a very
elegant one, enough to justify our choice of extra-logical features in the language.

 Many efforts have been made for the integration of logic and functional programming
paradigms in a common framework (see, for example [1, 3, 5, 7, 10, 12, 13]). These
languages are mostly pure in the sense they have no extra-logical features. Certainly, none of
them have the specific combination of features present in ROSE. Other researchers (see, for
example [4, 6, 8, 9]) have investigated the conditions under which narrowing and/or
conditional narrowing is complete. Some sort of restriction is usually imposed on the set of
rewrite rules to achieve the completeness results.

 The remainder of this paper is organized as follows. Section 2 gives a brief overview of
ROSE. Section 3 contains a more detailed description of the language. Section 4 describes
narrowing and conditional narrowing which is the operational semantics of the language.
Section 5 demonstrates the practicality of the language through many examples. Section 6
describes some other proposed functional/logic languages, and Section 7 is the conclusion.

2. A Brief Description of ROSE
As was mentioned before, ROSE programs consist of constructor based conditional term
rewriting systems where a condition can optionally be committing. The fact that we
differentiate between constructors and other function symbols permits a clean distinction
between data and functions that operate on data. This distinction not only makes
implementation efficient, but in addition, a normal form of a term can be defined very
naturally: a term is in normal form iff it contains only variables and constructors. So the
denotation of a term t is the set (due to non-determinism and possible non-confluence of rules)
of all terms in normal form t can be reduced to.

ROSE has higher-order features, such as the passing of functions as arguments and
returning them as values. To facilitate this, nameless functions in the form of conditional
lambda abstractions are part of ROSE syntax. This is the counterpart of lambda abstractions
in functional languages. apply is a built-in function of the language, which applies a nameless
function to one or more arguments. Formal parameters of conditional lambda abstractions are
terms in normal form, and application means e-unification of the formulas with actuals, and
applying the substitution generated to the body of the abstraction (actually, the process is a
little more complicated due to the condition, but this level of description is appropriate for
now).

 The operational semantics makes use of two narrowing strategies, as specified by the
programmer: the default strategy can be innermost, which results in an eager evaluation of
expressions, or outermost which results in a lazy evaluation of expressions and allows the

 3

handling of infinite data structures. Individual subterms of a term can be marked for execution
using either strategy, which gives the programmer a lot of flexibility in determining the
strategy to be used in evaluating expressions.

 The e-unification/narrowing algorithm employed can solve equations using either the
(leftmost) innermost or (leftmost) outermost narrowing strategies. Although incomplete in
general (not all possible subterms are tried in a narrowing step), this kind of controlled e-
unification is necessary due to efficiency considerations. Besides, the eager strategy in general
coincides with the intuitions of the programmer, and the lazy strategy is called for when
infinite data structures are required. Thus, not all the answers dictated by a declarative reading
of the programs shall be generated by the interpreter (in the case where the rules are confluent,
and a declarative reading is possible). But again, programmers seldom think in terms of
proving theorems when they write programs, and they usually have an operationally-oriented
mindset. Similar considerations lie behind the design choices of Prolog [2].

3. ROSE In Detail
In constructor based term rewriting systems, there are two kinds of function symbols: data
constructors, or just constructors, and defined function symbols, also called function names.
Constructors are used to represent data, much in the same way of the list constructor "." in
Lisp. Zero-ary constructors are also called constants. Below we give a recursive definition of
term as it applies to ROSE (in this presentation the terms term and expression are used
interchangeably).
• A constant (zero-ary constructor) is a term.
• A variable is a term. Variables in ROSE have the same meaning and notation as in Prolog.
• If s1, ... ,sn are terms and f is a function name, then f(s1, ... ,sn) is a term, also called a

function application.
• If s1, ... ,sn are terms and c is a constructor, then c(s1, ... ,sn) is a term, also called a

constructed expression.
• (lambda,[s1, ... ,sn] , condition, body) is a term, called a conditional lambda abstraction

(or just lambda abstraction) if s1, ... ,sn are terms in normal form (see below), and
condition, and body are terms. s1, ... ,sn are the formal parameters of the lambda
abstraction.

• apply(s1, ... ,sn) is a term, called and apply expression, if s1, ... ,sn are terms. s1 should be an
expression that evaluates to a lambda abstraction and s2, ... ,sn are the actual parameters s1
will be applied to.

The scope of the variables in s1, ... ,sn of a lambda abstraction (lambda,[s1, ... ,sn] , condition,
body) is the condition and body. All such variables in body or condition are said to be bound.
If a variable is not bound, then it is said to be free. A term is said to be in normal form if it
consists only of constructors, variables and lambda abstractions of the form (lambda,[s1, ...
,sn],guard,body). A ROSE program consists of an ordered set of conditional rewrite rules of
the form f(s1, ... ,sn):condition → body or f(s1, ... ,sn)#condition → body where s1, ... ,sn are all
in terms in normal form, f is a function symbol, and condition and body are terms. The first
definition above is a non-committing definition, whereas the second one is a committing
definition. Note that unconditional rewrite rules are equivalent to conditional ones where the
condition is the constant true.

ROSE also has a module system with public and private parts in each module. Let m be
the name of a module. The functions defined in a public part of m are visible to other modules
that use m, whereas the functions in the private part of m are visible only within m. Any
function in the public section of a module can be invoked from any module by prefixing it with

 4

the module it belongs to. For example, if f(...) is defined in the module m, m::f(...) invokes
f(...) in module m. A function f is accessible in a module n if f is defined in n, if f is in a module
that n uses, or if f is accessible in some module n' and n uses n' (i.e. accessibility is transitive).

4. Operational Semantics of ROSE
The operational semantics of ROSE is based on conditional narrowing. First, we give some
terminology and notations that will be used in the remainder of the paper. We denote a
substitution by {t1 / X1,..., tn / Xn} where X i , 1≤≤≤≤ i ≤≤≤≤ n, are called the replaced variables, and
t i, 1 ≤≤≤≤ i ≤≤≤≤ n, are called the replacing terms. An application of a substitution δδδδ to a term t,
denoted by (t) δδδδ, is the term obtained by simultaneously replacing all unbound variables X in t
with v such that v/X ∈∈∈∈ δδδδ. Composition of two substitutions δδδδ1 and δδδδ2, denoted by (δδδδ1 o
δδδδ2,), is defined to be a substitution θθθθ such that for any term t, (t) θθθθ= (t)((δδδδ1 o δδδδ2)=((t) δδδδ1)δδδδ2.

Let W be a set of variables, and δδδδ a substitution. The restriction of δδδδ to W, δδδδ [W], is
defined as { t / X | X ∈∈∈∈ W and t/X ∈∈∈∈ δδδδ }. VARt is the set of all variables in the term t,

t[u] denotes the subterm of t at occurrence u (u can be seen as the address of the
subterm). A redex is a subterm of the form f(...) where f is a function name. An innermost
redex is a redex that does not have a proper subterm that is also a redex (t[u] is a proper
subterm of a term t if t[u]≠ t).

4.1 Conditional Narrowing
Given a term E and a set of (conditional) rewrite rules, the algorithm in Figure 1 generates a
conditional narrowing tree for E. This algorithm performs conditional narrowing essentially
equivalent to that described in [8], but generates the narrowing tree explicitly. Note that a
forest of conditional narrowing trees is generated during the execution of the algorithm due to
the recursive calls for evaluating the conditions. For two expressions E and E' that are in the
conditional narrowing tree for some expression, if E' is a direct descendant of E (i.e. there are
no other nodes between E and E') and the arc between them is labeled with δ we say that E
and E' belong to the one step conditional narrowing relation and denote this fact as E >>>δ
E'.

Notice that conditional narrowing subsumes standard or unconditional narrowing in that
all unconditional rewrite rules are trivially conditional, where the condition is the constant
true. Note also that conditional narrowing is a semantically much more complex operation
than simple narrowing, which is what gives the conditional rewrite rules their expressive
power.

 5

Now, the algorithm in Figure 1 works only in the absence of conditional lambda abstractions.
To deal with abstractions, a conditional lambda abstraction can be temporarily given a unique
name, and a rewrite rule defined automatically for the abstraction. No subterm of a lambda
abstraction should be used in any narrowing step. If a leaf of the narrowing tree contains
apply((lambda,[s1, ... ,sn] , condition, body)),t1,...,tn), we generate a new rewrite rule f(s1, ...
,sn):condition → body where f is a previously unused function symbol, and replace
apply((lambda,[s1, ... ,sn] ,condition, body)),t1,...,tn) with f(t1,...,tn). Surely, this modification
preserves the intended semantics of the original program.

Furthermore, no provision is made for committing guards. That is a question of how and
when to prune the narrowing tree, and is explained in section 4.4.

4.2 Narrowing Strategies
A narrowing strategy determines which of the redexes of a leaf node in a narrowing tree will
be used in a narrowing step. Two obvious strategies are the innermost strategy, where an
innermost redex is selected, and the outermost strategy. In the outermost strategy, let L be a
leaf node, and L[u] be the redex selected. Then, it must be the case that there is no redex L[w]
of L such that L[u] is a proper subterm of L[w] and L[w] can participate in a narrowing step.
In other words, the inner subterms are evaluated just enough so that outer redexes can
participate in a narrowing step.

4.3 E-Unification
Narrowing can also be used to solve equations, an operation called e-unification. Suppose for
two terms t1 and t2 , we want to find a substitution δ such that (t1)δ = (t2) δ can be shown
to be true using the rewrite rules (interpreted as conditional equality between terms) in a
program. To find such a δ we need a rule X=X→ true to be part of the program. We then
generate the narrowing tree for the expression t1=t2. If there is a leaf in this tree which is the
constant true, the composition of substitutions on the path leading from the root to this
success node, say θ, gives us a substitution that is more general than δ, i.e. δ = θ o φ for
some φ [14].

4.4 Committing Guards
Committing guards are meaningful only if the narrowing tree for an expression is generated in
a left-to-right, depth-first fashion and the rules in a program have an ordering imposed on
them by their physical location in a program. Let E1 and E2 be related with the one step

1. Create a tree T with only one node, E (the expression to be narrowed).
2. Let L be a leaf in the narrowing tree generated so far.
• If L is in normal form, label it success.
• For any rule r lhs : cond → rhs and any subterm t of L at occurrence u: if substitution δ is

a most general unifier of t and lhs, the conditional narrowing tree for (cond)δ has a path
from the root to a leaf node that is the constant true with the composition of substitutions
along the path being θ (note the recursion!), create a child L' of L such that L'= (L[u ←
rhs]) δ)θ), and label the arc between L and L' as (δ o θ) (this is a one step narrowing
operation applied at every possible occurrence of L using every possible rule). If there is
no such rule r , label the node failure.

3. Repeat 2 until all leaves marked, or forever!

 Figure 1: Narrowing Algorithm (Using Conditional Rules)

 6

conditional narrowing relation, E2 being the child of E1. If f(...)#guard → body is the rule
used in the narrowing tree to get from E1 to E2, the semantics of the committing guard
dictates that there will be no other child of E1 to the right of the E2 that is obtained through
the use of another definition of f and the same subterm of E1 that was used in obtaining E2
This restriction prunes the full conditional narrowing tree of some of its branches, because the
programmer has given further information by using committing guards that those branches are
not useful in finding a solution.

The committing guard allows the programmer to specify control information in a similar
way to the cut operator in Prolog by allowing him to provide information about when
remaining rules defining a function need/should not be used once the guard in one rule
evaluates to true. The effect and convenience of this can be seen in the definition of various
functions in the section on examples. Because of the committing guard, however, it is possible
to write programs that are logically wrong, but which operationally exhibit correct behavior.
An example of this is given in Figure 2.

4.5 Using Conditional Guards To Define The Function not
In Horn clause logic programming, since no negative information can be represented [11],
negative information has to be deduced from the unprovability of positive information. Thus, if
p(a) cannot be shown to be true, then it is assumed to be false. This has been termed the
negation as (finite) failure rule. The same idea can be implemented in the context of
functional/logic programming using the idea of committing guards. Figure 4 depicts a
definition of the not function using committing guards.

4.6 Implementation of ROSE
Prolog has been used as the implementation language of ROSE. The intrinsic unification
facilities of Prolog and the fact that all the data we are dealing with, including the rules
defining functions, can be coded as first order terms, the native data structure of Prolog, have
been a big convenience.

5. Sample Programs in ROSE
In this section, we give some function definitions to highlight the main features and capabilities
of the language. We start out with functions that demonstrate the equation solving capabilities,
higher-order features, and lazy evaluation facilities of the language that permit the handling of
infinite data structures. (Note that even though in ROSE all functions must belong to some
module, here we have left out the declarations for modules for clarity and brevity.)

We have used outermost (lazy) narrowing as the default mode in executing the functions
given in the examples. However, no matter which strategy we are using as the default mode,

smaller(X,Y)# X<Y →→→→ true.
smaller(X,Y) →→→→ false.

Figure 2: Defining A Logically Wrong Function That Exhibits Correct Behavior

 not(X)# X →→→→ false.
 not(X) →→→→ true.

Figure 3: Defining The not Function Using Committing Guards

 7

the built-in functions (labels) lazy and eager allow us to override the default strategy and
execute any (sub)expression in a lazy or eager way. lazy(exp) evaluates exp utilizing the
outermost narrowing strategy, and eager(exp) evaluates exp utilizing the innermost strategy.
eq and lazy_eq are boolean valued built-in binary functions that e-unify their two arguments,
eq utilizing the innermost narrowing strategy, and lazy_eq utilizing the outermost narrowing
strategy.

5.1 Simple List Functions
In Figure 4 definitions of app(end), reverse and member are given. palindrome and revstrings
demonstrate the equation solving capability of ROSE. palindrome tests to see whether its
argument is a palindrome, i.e. if it reads the same both backwards and forwards. However,
when given a partially instantiated argument, it can generate the missing values in the sequence
given to it.

Figure 5 shows a terminal session, calling the function palindrome with an argument that is not
fully instantiated. (The underscore “_” has the same meaning as in Prolog: a variable whose
value will not be used elsewhere.) revstrings is also called and finds all substrings occurring in
its first argument that occur in its second argument in reverse order.

 app([],X) →→→→X.
 app([H|T],L) →→→→[H|app(T,L)].
 reverse([])→→→→[].
 reverse([H|T]) →→→→app(reverse(T),[H]).
 member(X,[X|Y])# true →→→→true.
 member(X,[H|T])# true →→→→member(X,T).
 member(X,Y) →→→→false.
 palindrome(L)# L lazy_eq reverse(L) →→→→true.
 palindrome(L) →→→→false.
 revstrings(A,B) : A lazy_eq app(X,app([H|T],Z)) and
 B lazy_eq app(XX,app(reverse([H|T]),ZZ))
 →→→→ [H|T].

Figure 4: Some L ist Functions

 8

5.2 Higher-Order Features
The foldr function (adapted from [1]) is defined in Figure 6 and demonstrates the higher-
order capabilities of ROSE. foldr takes three arguments: a binary operation OP, the identity
element under the operation, and a list of items belonging to the domain of the binary
operation. foldr(OP,IDENTITY,[a1,...,an]) returns OP(a1, OP(a2,... OP(a(n-1), OP(an

,IDENTITY))...)). foldr is thus implemented as a higher-order function.
Using foldr we can define other functions such as list_append, list_and and list_or by

instantiating the first two arguments of foldr to a previously defined function, and an identity
element under that function. Thus, list_append is a function that takes one argument, a list of
lists, and appends all the lists together. l ist_and and list_or are defined similarly.

map and twice are also higher-order functions: map applies its first argument to all the
elements of its second argument, and twice applies its first argument to its second argument
twice. Figure 7 depicts some function calls using interesting combinations of the above
functions.

 >> palindrome([1,2,_,3,_,_]).
 palindrome([1,2,3,3,2,1]) � true
 another solution ? y
 palindrome([1,2,_62,3,_66,_68]) has no other solution

 >> revstr ings([1,2,3,4],[5,2,1,7]).
 revstrings([1,2,3,4],[5,2,1,7]) => [1]
 another solution ? y
 revstrings([1,2,3,4],[5,2,1,7]) => [1,2]
 another solution ? y
 revstrings([1,2,3,4],[5,2,1,7]) => [2]
 another solution ? y
 revstrings([1,2,3,4],[5,2,1,7]) has no other solution

Figure 5: Sample Query

 twice(F,A) →→→→apply(F,apply(F,A)).
 map(F,[])# true →→→→[].
 map(F,[H|T]) →→→→[apply(F,H)|map(F,T)].
 foldr(OP,IDENTITY,[])# true →→→→IDENTITY .
 foldr(OP,IDENTITY,[H|T]) →→→→apply(OP,H,foldr(OP,IDENTITY,T)).
 list_append →→→→foldr(app, []).
 list_and →→→→foldr(and,true).
 list_or →→→→ foldr(or,false).
 true and true # true →→→→true.
 X and Y →→→→false.
 false or false # true →→→→false.
 X or Y →→→→true.

 Figure 6: Higher-Order Functions

 9

Note that when a function is to be passed as an argument, if that function has more than one
defining rule, lazy narrowing must be used, so that the name of the function, and not the
individual rewrite rules defining the function, are passed into the formal arguments.

5.3 Infinite Data Structures and Lazy Evaluation
Finally, we give the definitions of functions for generating the list of lucky numbers (again
adapted from [1]) which demonstrates the use of infinite data structures. The lucky numbers
are generated as follows: We start out with 1,3,5,7,9,11,13,15,17,19,21,... and remove from
the list every third item, which gives us 1,3,7,9,13,15,19,21,... Now, we remove from the
resulting list every seventh item, and keep going. The numbers remaining in this sequence are
the lucky numbers. Obviously, the list of lucky numbers is an infinite sequence. contains an
implementation of the lucky numbers function in ROSE, using an infinite list to hold the
resulting numbers. Note that we have used the built in function eager to evaluate eagerly what
does not need to be evaluated lazily, thus saving redundant recomputation caused by lazy
evaluation.

 Figure 9 depicts a query for generating the first 3 lucky numbers.

 >> list_append([[1],[2],[3]]).
 list_append([[1],[2],[3]]) � [1,2,3]
 another solution ? y
 list_append([[1],[2],[3]]) has no other solution
 >> map(twice(app([a])),[[b],[c],[d]]).
 map(twice(app([a])),[[b],[c],[d]]) � [[a,a,b],[a,a,c],[a,a,d]]
 another solution ? y
 map(twice(app([a])),[[b],[c],[d]]) has no other solution
 >> list_append(map(twice(app([a])), [[c],[d,e],[f]])).
 list_append(map(twice(app([a])),[[c],[d,e],[f]])) � [a,a,c,a,a,d,e,a,a,f]
 another solution ? y
 list_append(map(twice(app([a])),[[c],[d,e],[f]])) has no other solution

 Figure 7: Query For Some Higher-Order Functions

 lucky →→→→ [1|lucky2(2,odds(1))] .
 odds(N) →→→→[N|odds(eager(N+2))].
 lucky2(N,List): Y eq ith(N, lazy L ist) →→→→
 [Y|lucky2(eager(N+1),knock_out(1,Y,List))].
 ith(1,[H|T])# true →→→→H.
 ith(N,[H|T]) →→→→i th(N-1,lazy T).
 knock_out(X,Y,[H|T])# X eq Y →→→→knock_out(1,Y,T).
 knock_out(X,Y,[H|T]) →→→→[H|knock_out(eager(X+1),Y,T)].
 first_n_items(0,[H|T])# true →→→→[].
 first_n_items(N,[H|T]) →→→→[H|first_n_items(eager(N-1),T)].

 Figure 8: Function Definitions Demonstrating Infinite L ists

 10

6. Related Work
IDEAL, described in [1], is a language which combines type checking, higher-order objects,
lazy evaluation, function invertibility, and non-determinism. However, no mention is made of
equation solving, and the language adopted is much more complicated than conditional rewrite
rules with committing guards.

In the language described in [5], infinite data structures are available not as a result of the
innate execution mechanism, but by modifying the programs in a not-so-obvious way.

SLOG, described in [7], employs innermost superposition as its operational semantics and
does not have any notion of infinite data structures or higher-order functions.

K-LEAF, described in [10], is a language based on Horn Clause Logic with equality, and
also has no notion of higher-order functions.

The language described in [13] tries to unify the two paradigms at a semantic level using
domain theory as a common basis for functional and logic programming and uses set
abstraction in a predominantly functional language to provide logic programming capability.

The field of functional/logic programming has reached a certain maturation point, and
there is indeed quite a collection functional/logic programming languages already in existence,
each with a different subset of features associated with functional and logic programming. We
could not hope to list all of them here. ROSE is different from rest because it offers for the
first time the facilities for controlling the execution of functional/logic programs and pruning
the narrowing tree, where the pruning information is implicit in the rules in the form of guards.
In a sense the combination of the specific features of ROSE result in a somewhat different and
arguably more useful paradigm of computation then equational programming, which is what
functional/logic programming is usually taken to be.

7. Conclusion
We have presented a higher-order functional/logic programming language, ROSE, that
permits guards (committing conditions) in the conditional rewrite rules making up its
programs. Higher-order facilities are available in the form of conditional lambda abstractions
and the built-in apply function. The operational semantics, which is conditional narrowing
augmented to deal with committing guards, can be done lazily using the outermost narrowing
strategy (making possible infinite data structures) , or eagerly using the innermost narrowing
strategy.

The major innovation in ROSE is the new paradigm of computation that results from the
interplay between guards in the rules, non-confluent rewrite rules and backtracking (due to
non-determinism). Other powerful features, such as the logical variable, and higher order
features are an integral part of the language. Consequently, ROSE programs turn out to be
concise and easily understandable.

References
[1] P.G. Bosco and E. Giovanetti. IDEAL: An Ideal Deductive Applicative Language. In

Proceedings the 1986 Symposium on Logic Programming, pages 89-94, 1986.

 >> first_n_items(3,lucky).
 first_n_items(3,lucky) => [1,3,7]
 another solution ? y
 first_n_items(3,lucky) has no other solution

 Figure 9: Query For Generating The First Three lucky Numbers

 11

[2] William F. Clocksin and Cristopher S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, 1987.

[3] D. DeGroot and G.Lindstrom, editors. Logic Programming : Functions, Equations, and
Relations. Prentice-Hall, 1985.

[4] N. Dershowitz and M. Okada. Conditional equational programming and the theory of
conditional term rewriting. In Proceedings of the 1988 International Conference on Fifth
Generation Computer Systems, pages 337-346, 1988.

[5] N. Dershowitz and D.Plaisted. Logic programming cum applicative programming. In
Proceedings of the 1985 Symposium on Logic Programming, Pages 54-67, 1985

[6] M.Fay . First order unification in an equational theory. In Proceedings of the 4th
Workshop on Automated Deduction, Pages 161-167, 1979.

[7] L.Fribourg. SLOG: A logic programming language interpreter based on clausal
superposition and rewriting. In Proceedings of the !985 Symposium on Logic
Programming, Pages 172-184, 1985

[8] E. Giovannetti and C. Moiso. A completeness result for e-unification algorithms based on
conditional narrowing. In Foundations of Logic and Functional programming Workshop,
pages 157-167. Springer-Verlag LNCS 306,1986

[9] J. M. Hullot. Canonical forms and unification. In Proceedings of the 5. Conference on
Automated Deduction, pages 318-334, Berlin, 1980. Sringer-Verlag LNCS 87.

[10]Giorgio Levi et al. A complete semantic characterization of K-LEAF, a logic language
with partial functions. In Proceedings of the 1987 Symposium on Logic Programming,
pages 318-327, 1987.

[11]W. L. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.
[12]Uday S. Reddy. Narrowing as the operational semantics of functional languages. In

Proceedings of the 1985 Symposium on Logic Programming, pages 138-151, 1985.
[13]Frank S. Silberman and Baharat Jayaraman. A domain-theoretic approach to functional

and logic programming. Technical report TUTR 91-109, Tulane University, 1991.
[14]Akihiro Yamamoto. Completeness of extended unification based on basic narrowing. In

Proceedings of the Logic Programming Conference 88, pages 19-28, 1988.

