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      Abstract 
 
We present a higher-order functional/logic language, ROSE. The programs of ROSE are made 
up of conditional constructor based term rewriting systems. The conditions in the rules can 
optionally be committing. The operational semantics of the language is conditional narrowing, 
augmented to deal with committing conditions. The major innovation of the language is the 
use of committing guards and backtracking to make possible very practical, operationally 
oriented programs. We show many practical examples, one of which is the definition of the 
extra logical function not, which implements the negation-as-finite-failure rule in the context 
of functional/logic programming. 
 
Keywords: committing guards, conditional narrowing, e-unification, term rewriting systems, 
non-determinism, functional/logic programming, practicality 
 

1. Introduction 
ROSE is a declarative functional/logic language designed to demonstrate that functional/logic 
programming need not be seen only as a topic of academic interest, but rather that actually 
useful programs can be written in this paradigm. ROSE can be likened in a sense to Prolog, 
which demonstrated that theorem proving can also be used for computation and statements in 
first order predicate calculus can be seen as programs to be executed. The success of Prolog 
came about largely because of its pragmatist approach, which is most apparent in the inclusion 
of extra-logical facilities, such as the built-in predicates assert, retract, and cut (which 
controls backtracking), as well as somewhat ad-hoc higher-order features, such as the univ  
and call predicates. Furthermore, Prolog's depth first search strategy of the resolution tree is 
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incomplete. All these have features take us away from a purely declarative reading of Prolog 
programs, but were necessary  in order to obtain a usable programming language.  

ROSE programs consist of conditional constructor based term rewriting systems (which 
are not necessarily confluent) augmented with higher-order constructs (nameless functions in 
the form of a kind of generalized lambda abstraction) and  committing conditions (also called 
guards). Operational semantics is conditional narrowing, where the narrowing tree is traversed 
in a depth-first manner.  It is possible to choose from an innermost or outermost narrowing 
strategy, and switch between the two during execution as necessary. It is the interplay between 
guards, non-confluent rewrite rules, non-determinism and backtracking which give ROSE 
programs their brevity and expressive power. Admittedly, in the presence of this combination 
of features, it is hard to talk about a declarative reading of ROSE programs (i.e. seeing rewrite 
rules as conditional equality theories). However, as will be seen in the examples to follow, the 
operational paradigm of computation that is the result of this interplay turns out to be a very 
elegant one, enough to justify our choice of extra-logical features in the language. 

 Many efforts have been made for the integration of logic and functional programming 
paradigms in a common framework (see, for example [1, 3, 5, 7, 10, 12, 13] ). These 
languages are mostly pure in the sense they have no extra-logical features. Certainly, none of 
them have the specific combination of  features present in ROSE. Other researchers (see, for 
example [4, 6, 8, 9 ]) have investigated the conditions under which narrowing  and/or 
conditional narrowing is complete. Some sort of restriction is usually imposed on the set of 
rewrite rules to achieve the completeness results.  

 The remainder of this paper is organized as follows. Section 2 gives a brief overview of 
ROSE. Section 3 contains a more detailed description of the language. Section 4 describes 
narrowing and conditional narrowing which is the operational semantics of the language. 
Section 5 demonstrates the practicality of the language through many examples. Section 6 
describes some other proposed functional/logic languages, and Section 7 is the conclusion. 

2. A Brief Description of ROSE 
As was mentioned before, ROSE programs consist of  constructor based conditional term 
rewriting systems where a condition can optionally be committing. The fact that we 
differentiate between constructors and other function symbols   permits a clean distinction 
between data and functions that operate on data. This distinction not only makes 
implementation efficient, but in addition, a normal form of a term can be defined very 
naturally: a term is in normal form iff it contains only variables and constructors. So the 
denotation of a term t is the set (due to non-determinism and possible non-confluence of rules)  
of all  terms in normal form t can be reduced to.   

ROSE has higher-order features, such as the passing of functions as arguments and 
returning them as values. To facilitate this, nameless functions in the form of conditional 
lambda abstractions are part of ROSE syntax. This is the counterpart of lambda abstractions 
in functional languages. apply is a built-in function of the language, which applies a nameless 
function to one or more arguments. Formal parameters of conditional lambda abstractions are 
terms in normal form, and application means e-unification of the formulas with actuals, and 
applying the substitution generated to the body of the abstraction (actually, the process is a 
little more complicated due to the condition, but this level of description is appropriate for 
now). 

 The operational semantics makes use of two narrowing strategies, as specified by the 
programmer: the default strategy can be innermost, which results in an eager evaluation of 
expressions, or outermost which results in a lazy evaluation of expressions and allows the 
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handling of infinite data structures. Individual subterms of a term can be marked for execution 
using either strategy, which gives the programmer a lot of flexibility in determining the 
strategy to be used in evaluating expressions. 

 The e-unification/narrowing algorithm employed can solve equations using either the 
(leftmost) innermost or  (leftmost) outermost narrowing strategies. Although incomplete in 
general (not all possible subterms are tried in a narrowing step), this kind of controlled e-
unification is necessary due to efficiency considerations. Besides, the eager strategy in general 
coincides with the intuitions of the programmer, and the lazy strategy is called for when 
infinite data structures are required. Thus, not all the answers dictated by a declarative reading 
of the programs shall be generated by the interpreter (in the case where the rules are confluent, 
and a declarative reading is possible). But again, programmers seldom think in terms of 
proving theorems when they write programs, and they usually have an operationally-oriented 
mindset. Similar considerations lie behind the design choices of Prolog [2]. 

3. ROSE In Detail 
In constructor based term rewriting systems, there are two kinds of function symbols: data 
constructors, or just constructors, and defined  function symbols, also called function names. 
Constructors are used to represent data, much in the same way of the list constructor "."  in 
Lisp. Zero-ary constructors are also called constants. Below we give a recursive definition of 
term as it applies to ROSE (in this presentation  the terms term and expression are used 
interchangeably). 
• A constant (zero-ary constructor) is a term. 
• A variable is a term. Variables in ROSE have the same meaning and notation as in Prolog. 
• If s1, ... ,sn are terms and f is a function name, then f(s1, ... ,sn) is a term, also called a 

function application. 
• If s1, ... ,sn are terms and c is a constructor, then c(s1, ... ,sn) is a term, also called a 

constructed expression.   
• (lambda,[  s1, ... ,sn] , condition, body) is a term, called a conditional lambda  abstraction 

(or just lambda abstraction ) if s1, ... ,sn are terms in normal form (see below), and 
condition, and body are terms. s1, ... ,sn are the formal parameters of the lambda 
abstraction. 

• apply(s1, ... ,sn) is a term, called and apply expression, if s1, ... ,sn are terms. s1 should be an 
expression that evaluates to a lambda abstraction and s2, ... ,sn are the actual parameters s1 
will be applied to. 

The scope of the variables in s1, ... ,sn of a lambda abstraction (lambda,[  s1, ... ,sn] , condition, 
body) is the condition and body. All such variables in body or condition are said to be bound. 
If a variable is not bound, then it is said to be free.  A term is said to be in normal form if it 
consists only of constructors, variables and lambda abstractions of the form (lambda,[ s1, ... 
,sn],guard,body).  A ROSE program consists of an ordered set of conditional rewrite rules of 
the form f(s1, ... ,sn):condition → body or f(s1, ... ,sn)#condition → body where s1, ... ,sn are all 
in terms in normal form, f is a function symbol, and condition and body are terms. The first 
definition above is a non-committing definition, whereas the second one is a committing 
definition.  Note that unconditional rewrite rules are equivalent to conditional ones where the 
condition is the constant true. 

ROSE also has a module system with public and private parts in each module. Let m be 
the name of a module. The functions defined in a public part of m are visible to other modules 
that use  m, whereas the functions in the private part of m are visible only within m. Any 
function in the public section of a module can be invoked from any module by prefixing it with 
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the module it belongs to. For example, if f(...) is defined in the module m, m::f(...) invokes 
f(...) in module m. A function f is accessible in a module n if f is defined in n, if f is in a module 
that n uses, or if f is accessible in some module n' and n uses n' (i.e. accessibility is transitive). 

4. Operational Semantics of ROSE 
The operational semantics of ROSE is based on conditional narrowing. First, we give some 
terminology and notations that will be used in the remainder of the paper.  We denote a 
substitution  by {t1 / X1,..., tn / Xn}  where X i , 1≤≤≤≤ i  ≤≤≤≤ n, are called the replaced variables, and 
t i, 1 ≤≤≤≤ i ≤≤≤≤ n, are called the replacing terms.  An application of a substitution  δδδδ  to a term t, 
denoted by (t) δδδδ, is the term obtained by simultaneously replacing all unbound variables X in t 
with v such that v/X ∈∈∈∈ δδδδ. Composition of two substitutions δδδδ1  and  δδδδ2, denoted by  (δδδδ1  o  
δδδδ2,), is defined to be a substitution θθθθ  such that  for any term t, (t) θθθθ= (t)( (δδδδ1  o  δδδδ2)=((t) δδδδ1 )δδδδ2. 

Let W be a set of variables, and δδδδ  a substitution. The restriction of  δδδδ  to W, δδδδ [W], is 
defined as { t / X | X ∈∈∈∈ W and t/X ∈∈∈∈ δδδδ }. VARt  is the set of all variables in the term t,   

t[u] denotes the subterm of t at occurrence u (u can be seen as the address of the 
subterm). A redex is a subterm of the form f(...) where f is a function name.  An innermost 
redex is a redex that does not have a proper subterm that is also a redex (t[u] is a proper 
subterm of a term t if t[u]≠ t). 

4.1 Conditional Narrowing 
Given a term E and a set of (conditional) rewrite rules, the algorithm in Figure 1 generates a 
conditional narrowing tree for E. This algorithm performs conditional narrowing essentially 
equivalent to that described in [8], but generates the narrowing tree explicitly.  Note that a 
forest of conditional narrowing trees is generated during the execution of the algorithm due to 
the recursive calls for evaluating the conditions. For two expressions E and E' that are in the 
conditional narrowing tree for some expression, if E' is a direct descendant of E (i.e. there are 
no other nodes between E and E') and the arc between them is labeled with δ  we say that E 
and E' belong to the one step conditional narrowing relation and denote this fact as E >>>δ  
E'. 

Notice that conditional narrowing subsumes standard  or unconditional narrowing in that 
all unconditional rewrite rules are trivially conditional, where the condition is the constant 
true. Note also that conditional narrowing is a semantically much more complex  operation 
than simple narrowing, which is what gives the conditional rewrite rules their expressive 
power.  
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Now, the algorithm in Figure 1 works only in the absence of conditional lambda abstractions. 
To deal with abstractions, a conditional lambda abstraction can be temporarily given a unique 
name, and a rewrite rule defined automatically for the abstraction. No subterm of a lambda 
abstraction should be used in any narrowing step. If a leaf of the narrowing tree contains 
apply((lambda,[  s1, ... ,sn] , condition, body)),t1,...,tn), we generate a new rewrite rule f( s1, ... 
,sn):condition → body  where f  is a previously unused function symbol, and replace 
apply((lambda,[ s1, ... ,sn] ,condition, body)),t1,...,tn) with f(t1,...,tn). Surely, this modification 
preserves the intended semantics of the original program.  

Furthermore, no provision is made for committing guards. That is a question of how and 
when to prune the narrowing tree, and is explained in section 4.4. 

4.2 Narrowing Strategies 
A narrowing strategy determines which of the  redexes of a leaf node in  a narrowing tree will 
be used in a narrowing step. Two obvious strategies are the innermost strategy, where an 
innermost redex is selected, and the outermost strategy. In the outermost strategy, let L be  a 
leaf node, and L[u] be the redex selected. Then, it must be the case that there is no redex L[w] 
of L such that L[u] is a proper subterm of L[w] and L[w] can participate in a narrowing step. 
In other words, the inner subterms are evaluated just enough so that outer redexes can 
participate in a narrowing step. 

4.3 E-Unification 
Narrowing can also be used to solve equations, an operation called e-unification. Suppose for 
two terms  t1  and t2 ,  we want to find a substitution δ   such that  (t1)δ = (t2) δ can be shown 
to be true using the rewrite rules (interpreted as conditional equality between terms)  in a 
program. To find such a δ  we need a rule X=X→ true  to be part of the program. We then 
generate the  narrowing tree for the expression  t1=t2.  If there is a leaf in this tree which is the 
constant true, the composition of substitutions on the path leading from the root to this 
success node, say θ, gives us a substitution that is more general  than δ, i.e. δ = θ o φ   for 
some φ [14]. 

4.4 Committing Guards 
Committing guards are meaningful only if the narrowing tree for an expression is generated in  
a left-to-right, depth-first fashion and the rules in a program have an ordering imposed on 
them by their physical location in a program. Let E1 and E2 be related with the one step 

1. Create a tree T with only one node, E (the expression to be narrowed).  
2. Let L be a leaf in the narrowing tree generated so far. 
• If L is in normal form, label it success.  
• For any rule r  lhs : cond → rhs  and any subterm t of L at occurrence u: if substitution δ is 

a most general unifier of t and  lhs, the conditional narrowing tree for (cond)δ has a path 
from the root to a leaf node that is the constant true with the composition of substitutions 
along the path being θ (note the recursion!), create a child L' of  L such that L'= (L[u ← 
rhs]) δ)θ), and label the arc between L and L' as (δ o θ) (this is a one step narrowing 
operation applied at every  possible occurrence of L using every possible rule). If there is 
no such rule r , label the node failure. 

3. Repeat 2 until all leaves marked, or forever! 

 Figure 1:  Narrowing Algorithm (Using Conditional Rules) 
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conditional narrowing relation, E2 being the child of E1. If  f(...)#guard → body  is the  rule 
used in the narrowing tree to get from  E1  to E2, the semantics of the committing guard 
dictates that  there will be no other child  of  E1 to the right of the E2 that is obtained through 
the use of  another definition of f and the same subterm of E1  that was used in obtaining E2  
This restriction prunes the full conditional narrowing tree of some of its branches, because the 
programmer has given further information by using committing guards that those branches are 
not useful in finding a solution. 

The committing guard allows the programmer to specify control information  in a similar 
way to the  cut operator  in Prolog by allowing him to provide information about when 
remaining rules defining a function need/should  not be used once the guard in one rule 
evaluates to  true. The effect and convenience of this can be seen in the definition of various 
functions in the section on examples. Because of the committing guard, however, it is possible 
to write programs that are logically wrong, but which operationally exhibit correct behavior. 
An example of this is given in  Figure 2. 
 

 

4.5 Using Conditional Guards To Define The Function not 
In Horn clause logic programming, since no negative information can be represented [11], 
negative information has to be deduced from the unprovability of positive information. Thus, if 
p(a) cannot be shown to be true, then it is assumed to  be false. This has been termed  the 
negation as (finite) failure rule. The same  idea can be implemented in the context of 
functional/logic programming using the idea of committing guards. Figure 4 depicts a 
definition  of the not function using committing guards. 
 

4.6 Implementation of ROSE 
Prolog  has been used as the implementation language of ROSE. The intrinsic unification 
facilities of Prolog and the fact that all the data  we are dealing with,  including the rules 
defining functions,  can be coded as first order terms, the native data structure of Prolog, have 
been a big convenience.  

5. Sample Programs in ROSE 
In this section, we give some function definitions to highlight the main features and capabilities 
of the language. We start out with functions that demonstrate the equation solving capabilities, 
higher-order features, and lazy evaluation facilities of the language that permit the handling of 
infinite data structures.  (Note that even though in ROSE all functions must belong to some 
module, here we have left out the declarations for modules for clarity and brevity.) 

We have used outermost (lazy) narrowing as the default mode in executing the functions 
given in the examples.  However, no matter which strategy we are using as the default mode, 

smaller(X,Y)# X<Y →→→→ true. 
smaller(X,Y) →→→→ false. 

Figure 2: Defining A Logically Wrong Function That Exhibits Correct Behavior 

 not(X)# X →→→→ false. 
 not(X) →→→→ true. 

Figure 3:  Defining The not Function Using Committing Guards 
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the built-in functions (labels) lazy and eager allow us to override the default strategy and 
execute any (sub)expression in a lazy or eager way.  lazy(exp) evaluates exp utilizing the 
outermost narrowing strategy, and eager(exp) evaluates exp utilizing the innermost strategy. 
eq and lazy_eq are boolean valued built-in binary functions that e-unify their two arguments, 
eq utilizing the innermost narrowing strategy, and lazy_eq utilizing the outermost narrowing 
strategy. 

5.1 Simple List Functions 
In Figure 4 definitions of app(end), reverse and member are given. palindrome and revstrings 
demonstrate the equation solving capability of ROSE.  palindrome tests to see whether its 
argument is a palindrome, i.e. if it reads the same both backwards and forwards.  However, 
when given a partially instantiated argument, it can generate the missing values in the sequence 
given to it.  
 

Figure 5 shows a terminal session, calling the function palindrome with an argument that is not 
fully instantiated. (The underscore “_”  has the same meaning as in Prolog: a variable whose 
value will not be used elsewhere.) revstrings is also called and finds all substrings occurring in 
its first argument that occur in its second argument in reverse order. 
 

 app([],X) →→→→X.  
 app([H|T],L) →→→→[H|app(T,L)].  
 reverse([])→→→→[].  
 reverse([H|T]) →→→→app(reverse(T),[H]).  
 member(X,[X|Y])# true →→→→true.  
 member(X,[H|T])# true →→→→member(X,T). 
 member(X,Y) →→→→false.  
 palindrome(L)# L lazy_eq reverse(L) →→→→true.  
 palindrome(L) →→→→false.  
 revstrings(A,B) : A lazy_eq app(X,app([H|T],Z))  and  
    B lazy_eq app(XX,app(reverse([H|T]),ZZ))  
   →→→→ [H|T]. 

Figure 4: Some L ist Functions 
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5.2 Higher-Order Features 
The foldr function (adapted from [1]) is defined in Figure 6 and demonstrates the  higher-
order capabilities of ROSE.  foldr takes three arguments: a binary operation OP, the identity 
element under the operation, and a list of items belonging to the domain of the binary 
operation. foldr(OP,IDENTITY,[a1,...,an]) returns OP( a1, OP( a2,... OP( a(n-1), OP(an 

,IDENTITY) )...)). foldr is thus implemented as a higher-order function.  
Using foldr we can define other functions such as list_append, list_and and list_or by 

instantiating the first two arguments of foldr to a previously defined function, and an identity 
element under that function. Thus, list_append is a function that takes one argument, a list of 
lists, and appends all the lists together.  l ist_and and list_or are defined similarly. 
 

map and twice are also higher-order functions: map applies its first argument to all the 
elements of its second argument, and twice applies its first argument to its second argument 
twice. Figure 7 depicts some function calls using interesting combinations of the above 
functions. 

 

 >> palindrome([1,2,_,3,_,_]).  
 palindrome([1,2,3,3,2,1]) � true  
 another solution ? y  
 palindrome([1,2,_62,3,_66,_68]) has no other solution  
 
 >> revstr ings([1,2,3,4],[5,2,1,7]).  
 revstrings([1,2,3,4],[5,2,1,7]) => [1]  
 another solution ? y  
 revstrings([1,2,3,4],[5,2,1,7]) => [1,2]  
 another solution ? y  
 revstrings([1,2,3,4],[5,2,1,7]) => [2]  
 another solution ? y  
 revstrings([1,2,3,4],[5,2,1,7]) has no other solution  

Figure 5: Sample Query  

 twice(F,A) →→→→apply(F,apply(F,A)).  
 map(F,[])# true →→→→[].  
 map(F,[H|T]) →→→→[apply(F,H)|map(F,T)].  
 foldr(OP,IDENTITY,[])# true →→→→IDENTITY .  
 foldr(OP,IDENTITY,[H|T]) →→→→apply(OP,H,foldr(OP,IDENTITY,T)).  
 list_append →→→→foldr(app, []).  
 list_and →→→→foldr(and,true).  
 list_or →→→→ foldr(or,false).  
 true and true # true →→→→true.  
 X and Y →→→→false.  
 false or false # true  →→→→false.  
 X or Y →→→→true. 

 Figure 6: Higher-Order Functions 
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Note that when a function is to be passed as an argument, if that function has more than one 
defining rule, lazy narrowing must be used, so that the name of the function, and not the 
individual rewrite rules defining the function, are passed into the formal arguments. 

5.3 Infinite Data Structures and Lazy Evaluation 
Finally, we give the definitions of functions for generating the list of lucky numbers (again 
adapted from [1]) which demonstrates the use of infinite data structures. The lucky numbers 
are generated as follows: We start out with 1,3,5,7,9,11,13,15,17,19,21,...  and remove from 
the list every third item, which gives us 1,3,7,9,13,15,19,21,...  Now, we remove from the 
resulting list every seventh item, and keep going. The numbers remaining in this sequence are 
the lucky numbers.  Obviously, the list of lucky numbers is an infinite sequence.  contains an 
implementation of the lucky numbers function in ROSE, using an infinite list to hold the 
resulting numbers.  Note that we have used the built in function eager to evaluate eagerly what 
does not need to be evaluated lazily, thus saving redundant recomputation caused by lazy 
evaluation. 
 

 Figure 9 depicts a query for generating the first 3 lucky numbers.  
  

 >> list_append([[1],[2],[3]] ). 
 list_append([[1],[2],[3]]) �  [1,2,3]  
 another solution ? y  
 list_append([[1],[2],[3]]) has no other solution  
 >> map(twice(app([a])),[[b],[c],[d]]).   
 map(twice(app([a])),[[b],[c],[d]]) � [[a,a,b],[a,a,c],[a,a,d]] 
 another solution ? y 
 map(twice(app([a])),[[b],[c],[d]]) has no other solution 
 >> list\_append( map( twice(app([a])), [[c],[d,e],[f]] )).  
 list_append(map(twice(app([a])),[[c],[d,e],[f]])) �  [a,a,c,a,a,d,e,a,a,f] 
 another solution ? y  
 list_append(map(twice(app([a])),[[c],[d,e],[f]])) has no other solution  

 Figure 7: Query For Some Higher-Order Functions 

 lucky →→→→ [1|lucky2(2,odds(1))] . 
 odds(N) →→→→[N|odds(eager(N+2))]. 
 lucky2(N,List): Y eq ith(N, lazy L ist) →→→→ 
   [Y|lucky2(eager(N+1),knock_out(1,Y,List))]. 
 ith(1,[H|T])# true →→→→H.  
 ith(N,[H|T]) →→→→i th(N-1,lazy T). 
 knock_out(X,Y,[H|T])# X eq Y →→→→knock_out(1,Y,T). 
 knock_out(X,Y,[H|T]) →→→→[H|knock_out(eager(X+1),Y,T)]. 
 first_n_items(0,[H|T])# true →→→→[].  
 first_n_items(N,[H|T]) →→→→[H|first_n_items(eager(N-1),T)].  

 Figure 8: Function Definitions Demonstrating Infinite L ists 
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6. Related Work 
IDEAL, described in [1], is a language which combines type checking, higher-order objects, 
lazy evaluation,  function invertibility, and non-determinism. However, no mention is made of 
equation solving, and the language adopted is much more complicated than conditional rewrite 
rules with committing guards. 

In the language described in [5],  infinite data structures are available not as a result of the 
innate execution mechanism, but by modifying the programs in a not-so-obvious way. 

SLOG, described in [7], employs innermost superposition as its operational semantics and 
does not have any notion of infinite data structures or higher-order functions. 

K-LEAF, described in [10], is a language based on Horn Clause Logic with equality, and 
also has no notion of higher-order functions. 

The language described in [13]  tries to unify the two paradigms at a semantic level using 
domain theory as a common basis for functional and logic programming and uses set 
abstraction in a predominantly functional language to provide logic programming capability.  

The field of functional/logic programming  has reached a certain maturation point, and 
there is indeed quite a collection functional/logic  programming languages already in existence, 
each with a different subset  of features associated with functional and logic programming. We 
could not hope to list all of them here. ROSE is different from rest because it offers for the 
first time the facilities for controlling the execution of functional/logic programs and pruning 
the narrowing tree, where the pruning information is implicit in the rules in the form of guards. 
In a sense the combination of the specific features of ROSE result in a somewhat different and 
arguably more useful paradigm of computation then equational programming, which is what 
functional/logic programming is usually taken to be.    

7. Conclusion 
We have presented a higher-order functional/logic programming language, ROSE,  that 
permits guards (committing conditions) in the conditional  rewrite rules  making up its 
programs. Higher-order facilities are available in the form of conditional lambda abstractions 
and the built-in apply function. The operational semantics, which is conditional narrowing 
augmented to deal with committing guards, can be done lazily using the outermost narrowing 
strategy (making possible infinite data structures) , or eagerly using the innermost narrowing 
strategy. 

The major innovation in ROSE is the new paradigm of computation that results from the 
interplay between guards in the rules, non-confluent rewrite rules and backtracking (due to 
non-determinism). Other powerful features, such as the logical variable, and higher order 
features are an integral part of the language. Consequently, ROSE  programs turn out to be 
concise and easily understandable. 
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