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Abstract 
We describe a  probabilistic backtracking forward-chained  expert system shell  that 
performs a best-first search of the state-space consisting of working memory states.  The 
state space that needs to be traversed can be narrowed significantly through tactful  use of 
the context mechanism. Fail conditions  detect forbidden working memory states and 
cause immediate backtracking.  Heuristic information about which rules should have 
higher priority are encoded in the rules at the granularity level of condition elements  in 
the form of  importance factors.  Facts in the  working memory  have associated with 
them confidence factors, which allows the representation of uncertain information. The  
paradigm that results as the combination of this specific set of features permits declarative 
specification of the state space required for the solution of many kinds of scheduling 
problems and other kinds of  problems requiring intelligent search of the state space with 
possible backtracking.  
 
K eywords: Expert system shell, forward chaining, backtracking, context, heuristic, 
intelligent search, inference 

1. Introduction 

Forward chaining  inference engines start with an initial  state of the world (as described 
by the initial contents of the working memory), and seek to reach a goal state through 
repeated application of a certain set of transformations, usually specified in the form of if-
then rules [[5],[7]]. The deficiency of most current forward chaining expert system shells 
is that they allow a single line of reasoning (also called hill climbing). If,  upon reaching 
a certain state the system cannot proceed any further (possibly  because a wrong choice 
was made earlier in the selection of which rule to fire),  the system stops without finding a 
solution.  The main reason for this deficiency is efficiency: saving the choice points at 
every iteration certainly consumes a lot of space.  

State Space Search Tool (SSST) is an expert system shell with an inference engine 
that does allow backtracking. In SSST the efficiency problem is dealt with in three ways: 
(1) by making the search space small through a context mechanism, (2) by careful 



pruning of branches in the search tree that cannot possibly lead to a solution using fail 
conditions, and (3) by guiding the search through heuristic information encoded in the 
rules at a very fine level of granularity through importance factors.  Fail conditions are 
predicates on the working memory which describe forbidden working memory states. If a 
fail condition is satisfied (made true) by the current working memory, immediate 
backtracking is initiated to explore other branches of the search space. As such, fail 
conditions help to specify constraints on the working memory states.  Through clever use 
of these three mechanisms, the search space can be cut down dramatically and full 
backtracking becomes practical. 

SSST programs are also declarative in the sense that (production) rules describe 
relationships that may exist among working memory states, fail conditions describe 
forbidden memory states, and success conditions (called end_goal in SSST syntax) 
describe final working memory states beyond which no further inferencing needs to be 
made, since the working memory already contains a solution. After the initial working 
memory is given, all the rest is up the system. 

SSST is not complete in a theoretical sense, in that a line of reasoning may be infinite, 
with no solutions on the path, while at the same time a solution may exist on another 
unexplored  branch. However, a theoretically complete system requires a full  breadth-first 
search of the state space which is an impractical proposition in terms of time efficiency. It 
is by a similar efficiency consideration that the Prolog  language [[6]] also uses a depth-
first strategy, even though it is incomplete for SLD resolution, the operational semantics 
of Prolog.  

In the remainder of this paper we describe the knowledge representation, execution 
model of SSST and give one (due to lack of space) example of its use. We then compare 
SSST with some other expert system shells in its class and conclude with a summary and 
further research directions. 

2. Knowledge Representation in SSST 

2.1 Working Memory Elements 

Knowledge is represented in the form of facts in the working memory. Before a fact can 
be added to the working memory, its template must be made known to the system through 
the literalize command. Suppose we wish to place information about a car into the 
working memory. Assume that a car has the attributes owner , color  and age. First, the 
command 
 

is given to the system. This needs to be done only once. Then, to place information about 
a car into working memory,  the following command is given. 
 

?- literalize(car (owner ,color ,age)). 
 

?- make( car (0.5, owner  george, color  green, age 5)). 
 



This means that we are 50% confident that there is a car whose color is green, age is 5 and 
is owned by george. It is possible to leave some attributes unspecified: they are taken to 
be nil.  If the working memory does not contain an entry for a given fact, its confidence 
factor is taken to be -1.0.  

2.2 Production Memory 

The production memory consists of a set of productions. Each production is an if-then 
rule of the form  
 

 

2.2.1 Left-Hand-Side Conditions 

Each condition element (CE) is one of 
• An SSST goal which is meant to match a fact in the working memory. The template of 

the goal should have been  by a literalize command. An example of an SSST goal is: 
car ( 1, owner  mar y) .  The first argument to car  is the importance factor . 
Such a goal is true if it has an importance factor IF, it matches a working memory 
element with confidence factor CF, and IF*CF>0. An SSST goal usually has logical 
variables in them. For example, in car ( 1, owner  X,  col or  r ed) ,  X is a logical 
variable. Logical variables are bound to terms in the working memory through simple 
first order unification.  If the variable occurs anywhere else in the rule, either on the 
left hand side or right hand side, the value it is originally bound to is substituted for all 
the other  occurrences. Logical variables always start with a capital letter, as in Prolog 
systems. 

• eval uat e( i mpor t ance_f act or ,  goal )  where goal  is a goal to be satisfied 
by the underlying CLP(R) interpreter. This kind of CE evaluates to true if the goal 
succeeds and the i mpor t ance_f act or  > 0, or if it fails and 
i mpor t ance_f act or  < 0.  

• one_t r ue( i mpor t ance_f act or ,  condi t i on_el ement 1 and 
condi t i on_el ement 2  and . . . ) .  This is like the or operator. It is true only 
if at least one of its components is true and its importance_factor > 0, or if none of its 
components is true and its importance_factor < 0. Note that the syntactic construct 
"and"  used here is nothing more than a connector, and does not have the "logical and" 
meaning. 

 rule(   rule_name, 
           list_of_contexts_in_which_the_rule_is_active,  
           condition_element1 and 
           condition_element2 and 
                 ........ 
           condition_elementn 

            --> 
           r ight_hand_side_action1 and 
           r ight_hand_side_action2 and 
                 ......... 
           r ight_hand_side_actionm ). 



• al l _t r ue(  i mpor t ance_f act or ,  condi t i on_el ement 1  and 
condi t i on_el ement 2  and . . . ) .  This is the and operator. It is true if all its 
components are true and its importance_factor > 0, or not all of its components are 
true and its importance_factor < 0. Again note that "and" is used only as a connector. 

• not _t r ue( i mpor t ance_f act or ,  condi t i on_el ement 1  and 
condi t i on_el ement 2  and . . . ) .  This is the not operator. It is false  if  all 
its components are true and its importance_factor > 0, or there is no condition under 
which all its components can be true, but its importance_factor is negative. It is true 
otherwise. The "and" here can really be seen as the "logical and". 

2.2.2 Right-Hand-Side Actions 

The following is the list of right hand side actions. 
• r emove( i ndex)  where index is the position on the left hand side of the CE to be 

removed. It causes the removal of the fact which matched the CE from the working 
memory. 

• make( CF,  w_m_e) . Causes the addition to the working memory element w_m_e  
to the working memory with confidence factor CF. 

• modi f y( i ndex,  CF,  at t r i but e_name1 at t r i but e_val ue1,  
at t r i but e_name2 at t r i but e_val ue2, . . . . ) . Causes the modification of 
the working memory element matched by the CE on the left whose position is index on 
the left hand side. 

• eval uat e( goal )  where goal  is a goal to be satisfied by the underlying CLP(R) 
interpreter. 

• add_cont ext ( a_cont ext _name)  which adds a_cont ext _name to the 
current list of active contexts 

• r emove_cont ext ( a_cont ext _name) which removes a_cont ext _name 
from the current list of active contexts. 

Right hand side actions are usually grouped together using the "and" syntactic construct, 
which again has no relation to the "logical and". 

Note that the language of SSST is very small in terms of the primitives. This is 
because all facilities of the underlying CLP(R) interpreter are available to be called upon 
both on the left hand side and right hand side of the rules (for example, input, output 
operations etc.). 

2.3 Initializing the Working Memory and  Active Contexts 

Before facts can be added to the working memory, their templates must be declared to the 
system through the literalize command. Also, before contexts can be added to the active 
contexts list, they must be declared by the "context" command.  As an example of a 
template declaration,  we may have: 
 
?- literalize(pref(student,course)). 
 



This declares the predicate "pref" to have two attributes, "student" and "course". Note the 
"?-" which means this is treated as a CLP(R) goal to be evaluated when the input file is 
being read. Next,  in order to place an initial fact into the working memory, we use the 
make command, as shown below: 
 

The above code is part of a full example given later on. Here, we are declaring that 
student "sema" has a preference for course "cmpe150" with a desire as strong as "1.0", has 
a preference for course "cmpe420" with a desire as strong as "0.9", and has a preference 
for course "cmpe220" with a desire as strong as "0.8". The conflict resolution mechanism 
of SSST will guarantee that if there is a rule which matches all three facts, the instantiation 
obtained using the first fact will have higher precedence over the instantiation obtained 
using the second fact, and similarly for second and third  facts.   Again notice the use of 
"?-". 

The following code shows how to declare contexts and initialize the active context 
list.  

 

2.4 Success Conditions 

A success condition is a predicate on the working  memory elements. If the current 
working memory satisfies a success condition, the inference engine stops, prints the 
contents of the working memory, asks for whether another answer is required, and if the 
answer is positive, it backtracks. Otherwise, no further inferencing is done.  Syntactically, 
an end condition  is similar to a left hand side condition and is written as end_goal( name,  
context_list,  a_condition). An example of an end condition is given below. 
 

2.5 Fail Conditions 

A fail condition is like a consistency check on the working memory. It says that a working 
memory under which the condition holds true is invalid. A fail condition, if satisfied by the 
working memory, causes immediate backtracking.  Syntactically, it is written as 
fail_condition(name, context_list, a_condition). An example of a fail condition is given 
below: 
 

?- make( pref(1.0, student sema, course cmpe150)). 
?- make( pref(0.9, student sema, course cmpe420)). 
?- make( pref(0.8, student sema, course cmpe220)). 

context(left). 
context(r ight). 
?- add_context(left). 

end_goal( e1, [r ight],  
          id(1, cannibals_left 0, missionar ies_left 0, boat r ight)). 



3. Execution Model of SSST 

3.1 Inference Algorithm  

In  Figure 1 we give the execution model of  SSST. This model performs a full search of 
the state-space, backtracking if necessary to find a solution. A choice point for 
backtracking occurs  where a rule selection is made from the conflict set for application to 
the current working memory and the conflict set contains other rules that apply to the 
same working memory. Rule selection is done according to a  measure (to be described 
shortly)  of how well each rule in the conflict set  matches the current working memory. 
First, the rule with highest score is selected, and upon backtracking, other rules in the 
conflict set are selected, in decreasing order of their score.   
 

Figure 1: Abstract M odel of Execution of SSST 

Success conditions  permit the description of the conditions under which 
computation may stop, and fail conditions specify  unallowed working memory states, 
causing immediate backtracking. The algorithm is recursive, with the working memory, 
conflict set and set of active contexts being arguments to the INFER function. 

The context mechanism allows the constraining of the state space, resulting in more 
efficient execution (both in terms of speed and space), since a rule is applicable only if at 
least member of its context list is active at the time of the match operation.  apply(...) 
takes as arguments a working memory, a rule and a context list and returns a pair: an 
updated working memory and an updated context list. This function applies its rule 
argument to its working memory argument, and updates the working memory and context 

fail_condition( f1, [left,r ight], 
                    id(1, cannibals_left C, missionar ies_left M) and 
                          evaluate(1,C>M) and  
                          evaluate(1,M>0)). 

function  INFER ( CS1,WM 1,CTX1) : boolean 
Begin 
   For  each rule R in CS1 do 
   begin 
       (WM 2,CTX2) :=  apply(WM 1,R,CTX1); 
        if WM 2 satisfies any end condition, pr int WM 2 and return(TRUE); 
        if WM 2 satisfies any fail condition then  
                       continue with the next rule in CS1; 
       CS2 := match (WM 2, CTX2); 
        if  INFER (CS2, WM 2, CTX2) then return(TRUE); 
   end_for ; 
   return(FALSE); 
End; 
 
Begin main 
 Working_memory := initialize_with_facts(); 
 Context := Form_initial_set_of_contexts(); 
 Conflict_set :=  match(Working_memory, Context); 
 return INFER( Conflict_set, Working_memory, Context); 
End main; 



list according to the actions specified in the rule. match(...) matches only the rules that are 
active in the current context list against the current working memory, returning a new 
conflict set of instantiated rules.  

For the sake of simplicity, the algorithm has been presented  at a very high level of 
abstraction, and without the techniques used to avoid iteration over the rule base and 
working memory inside the match(...) function.  

3.2 Conflict Resolution 

The match  phase in forward chaining causes a confidence factor to be associated with 
each condition element (CE) on the left hand side of a rule (which is the confidence factor 
of the working memory element that unified with the condition element). Since each CE 
already had an importance factor (IF) associated with it, we can then compute, for each 
rule matched against the working memory, a score, denoting how well the rule matched 
the working memory. That score is given by CF IFi

i
i

�
* , where i is the index of each 

condition element (its relative position on the left hand side). An instantiated  rule is 
placed in the conflict set only if each CE in the rule has positive CF*IF and if CF IFi

i
i

�
*  

is greater than some threshold, usually zero. The rules are then ranked in the conflict set 
according to their scores, those with highest scores being on top, with rules with higher 
scores taking precedence over rules with lower scores. Upon backtracking, all rules in the 
conflict are tried. This is an implementation of the "best-first" conflict resolution strategy 
with backtracking. 

4. An Example SSST Program: Assignment of Teaching 
Assistants to Courses Problem 
This is a problem that surfaced in the Computer Engineering Department of Bogazici 
University. A fixed number of teaching assistants are to be assigned to a fixed number of 
computer courses as assistants. Each assistant fills out a form of preferences, listing his/her  
preference from highest to lowest. For each course the number of teaching assistant 
needed is fixed. Below we give a solution to this problem in SSST. As a simplification, we 
assume that there are only three students, "duygu," "sema" and "cenk."  Also we include 
only three preferences for each student. The algorithm cycles through the students, trying 
to give each student their first choice, then their second choice etc.  
 
First we declare a context called  "all" and make it active. In this example, only one 
context is used. 
  

Next, we declare the templates for facts in the working memory.  
 

context(all). 
?- add_context(all). 



We then initialize the working memory with facts regarding students and their preferences. 
For example, "sema" is a Ph.D. student and will assist in at most 2 courses.  
 

 

Next we add the preferences of students. Note how "confidence factors" are used to 
specify preferences.  
 

Then we add information regarding how many teaching assistants are required for each 
course. We start allocating courses to student with "sema". 
 

We place an order in which students will be considered for allocation of courses. We shall 
cycle around "sema," "cenk," "duygu" and then back to "sema". This order is established 
using CLP(R) facts rather than SSST facts, since confidence factors are not needed here. 
 

Now we come to the rules. r1  says that if the current student S has not been assigned its 
maximum number of courses, he has a preference for a course C and the course C still 
requires student assistants, assign the student S to the course C, remove the course 
preference which has been assigned, decrease by one the number of students required for 
the course C, decrease by one the number of courses the student can be assigned to (since 
one assignment has just been made), and make the next student the current one.  
 

?- literalize(pref(student,course)). 
?- literalize(assigned(student,course)). 
?- literalize(requires(course,no_students)). 
?- literalize(cur rent_student(student)). 
?- literalize(info(student,class,remaining)). 

?- make( info(1, student sema, class phd, remaining 2)). 
?- make( info(1, student cenk, class masters,remaining 2)). 
?- make( info(1, student duygu, class phd, remaining 2)).  

?- make( pref(1.0, student sema, course cmpe150)). 
?- make( pref(0.9, student sema, course cmpe420)). 
?- make( pref(0.8, student sema, course cmpe220)).         
 
?- make( pref(1.0, student cenk, course cmpe420)). 
?- make( pref(0.9, student cenk, course cmpe520)). 
?- make( pref(0.8, student cenk, course cmpe350)). 
 
?- make( pref(1.0, student duygu, course cmpe220)). 
?- make( pref(0.9, student duygu, course cmpe520)). 
?- make( pref(0.8, student duygu, course cmpe350)). 

?- make( requires(1, course cmpe150, no_students 2)). 
?- make( requires(1, course cmpe220, no_students 2)). 
?- make( requires(1, course cmpe350, no_students 1)). 
?- make( cur rent_student(1, student sema)). 

next(sema, cenk). 
next(cenk,duygu). 
next(duygu,sema). 



In rule r1a, if the current student has already been assigned its total maximum number of 
courses, and there is a student who has not been assigned its maximum number of courses, 
go on to the next student in hopes of finding a solution. 
 

Rule r1b is similar to rule r1a, except we take no notice of the student's   preference. 
Even though both this rule and rule r1 will usually match the same working memory, 
because of the conflict resolution strategy,  rule r1 will always take precedence, and r1b 
will apply only upon backtracking, if a solution cannot be found by taking into account    
students desires. This is the guarantee that at least a solution will be found, except when 
no solution is theoretically possible, i.e. when the total number of assignments possible is 
less then to total number of  required assignments. 
 

Finally, we have the success condition which evaluates to true when all courses have been 
assigned  their required number of students. 
 

rule( r1, [all],  
         cur rent_student(1, student S)  and 
         info(1, student S, remaining R) and 
         evaluate(1, R>0) and 
         pref(1, student S, course C) and 
         requires(1, course C, no_students N) and 
         evaluate(1, N>0) and 
         assigned(-1, student S, course C) and 
         evaluate(1, next( S, S2))  
         --> 
         remove(4) and 
         make( assigned(1, student S, course C)) and 
         modify(5, 1.0, no_students (N-1)) and        
         modify(1, 1.0, student S2) and 
         modify(2, 1.0, remaining (R-1)) ). 

rule( r1a, [all],  
         cur rent_student(1, student S)  and 
         info(1, student S, remaining 0) and 
         info(1, student S3, remaining R) and 
         evaluate(1, R>0) and 
         evaluate(1, next( S, S2))  
         --> 
         modify(1, 1.0,  student S2)). 

rule( r1b, [all],  
         cur rent_student(1, student S)  and 
         info(1, student S, remaining R) and 
         evaluate(1, R>0) and 
         requires(1, course C, no_students N) and 
         evaluate(1, N>0) and 
         assigned(-1, student S, course C) and 
         evaluate(1, next( S, S2))  
         --> 
         make( assigned(1, student S, course C)) and 
         modify(4, 1.0, no_students (N-1)) and        
         modify(1, 1.0, student S2) and 
         modify(2, 1.0, remaining (R-1)) ). 



One solution found by SSST is given below.  
 

Note in this solution how the problem has been specified declaratively, the number of rules 
required is very small, preferences of students have been easily incorporated into rules to 
guide the system in conflict resolution so that students' preferences are honored as much 
as possible, and the presence of the end condition simplified the rules actually used during 
forward chaining. 

5. Related Work 
There is an abundance of Expert System Shells with varying  features. These include 

object-oriented extensions to the basic paradigm of knowledge representation, context 
mechanisms for rule partitioning,  focus of attention mechanisms including varying rule 
priorities at run time, two way integration with other software systems, such as 
programming languages and database systems, truth maintenance and graphical 
development tools among others. [[1],[3],[4],[5],[7]] contain  detailed surveys of  various 
currently available Expert System Shells and their features.  None of  these tools surveyed 
has the specific combination of features which allows a full search of the state-space, 
declarative specification of the problem in terms of rules, fail conditions and success 
conditions, and incorporation of heuristic information inside rules at the granularity level 
of condition elements. 

6. Conclusions and Further Work 
We presented  a probabilistic forward chaining expert system shell with full backtracking. 
Knowledge representation is declarative in the form of if-then rules, fail conditions and 
success conditions. Heuristics about rule priorities are specified at the granularity of 
condition elements. Working memory elements have confidence factors associated with 
them, which permits representation of uncertain knowledge. The paradigm of computation 
that results from the combination of features present in SSST make it most suitable for the 
precise specification and efficient solution of problems requiring possible backtracking in 
the search of state-space for their solution. Scheduling problems are good examples of 
such problems. 

Future work on SSST includes improving the efficiency of the interpreter through 
optimizations of its various components, as well as addition of object oriented 
functionality to replace the current system of templates and facts.  
 

end_goal(g1,[all],not_true(1, requires(1, course C, no_students N) and 
                              evaluate(1, N>0))). 

 
assigned(1, student cenk, course cmpe150) 
assigned(1, student sema, course cmpe220) 
assigned(1, student duygu, course cmpe220) 
assigned(1, student cenk, course cmpe350) 
assigned(1, student sema, course cmpe150) 
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