
Computer College, Department of Computer Science, Kingdom of Saudi Arabia

 INSTRUCTOR:
Shahid Iqbal Lone
e_mail: loneshahid@yahoo.com

 COURSE BOOK:

1. Tanenbaum Aaron M, Langsam Yedidyah, Augenstein J Moshe, Data Structures
using C.

 LIST OF REFERENCE MATERIAL:

1. Seymour Lipschutz, Theory and Problems of data Structures, Schaum’s Series,
Tata McGraw Hill, 2004.

2. Tremblay J.P and Sorenson P.G, An introduction to data structures with
applications, Tata McGraw Hill, 2nd Edition.

3. Gilberg, F Richard & Forouzan, A Behrouz, Data Structures A Pseudocode
approach with C, Thomson Brooks/Cole Publications,1998.

 OBJECTIVES:

With a dynamic learn-by-doing focus, this document encourages students to explore data
structures by implementing them, a process through which students discover how data
structures work and how they can be applied. Providing a framework that offers
feedback and support, this text challenges students to exercise their creativity in both
programming and analysis. Each laboratory work creates an excellent hands-on learning
opportunity for students. Students will be expected to write C-language programs,
ranging from very short programs to more elaborate systems. Since one of the goals of
this course is to teach how to write large, reliable programs. We will be emphasizing the
development of clear, modular programs that are easy to read, debug, verify, analyze, and
modify.

 PRE-REQUISITE:

A good knowledge of c-language, use of Function and structures.

mailto:loneshahid@yahoo.com

D A T A S T R U C T U R E S (CSC-214)

2 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Data:
Data are simply collection of facts and figures. Data are values or set of

values. A data item refers to a single unit of values.
Data items that are divided into sub items are group items; those that are not

are called elementary items. For example, a student’s name may be divided into
three sub items – [first name, middle name and last name] but the ID of a student
would normally be treated as a single item.

Student

ID Name Address Age Gender

First Middle Last

 Street Area

In the above example (ID, Age, Gender, First, Middle, Last, Street, Area) are
elementary data items, whereas (Name, Address) are group data items.

An entity is something that has certain attributes or properties which may be
assigned values. The values themselves may be either numeric or non-numeric.
Example:

Attributes: Name Age Gender Social Society number
Values: Hamza 20 M 134-24-5533

 Ali Rizwan 23 M 234-9988775
 Fatima 20 F 345-7766443

Entities with similar attributes (e.g. all the employees in an organization)
form an entity set. Each attribute of an entity set has a range of values, the set of all
possible values that could be assigned to the particular attribute.

The term “information” is sometimes used for data with given attributes, of,
in other words meaningful or processed data.

A field is a single elementary unit of information representing an attribute of
an entity, a record is the collection of field values of a given entity and a file is the
collection of records of the entities in a given entity set.

Data Structure:
In computer science, a data structure is a particular way of storing and

organizing data in a computer’s memory so that it can be used efficiently. Data may
be organized in many different ways; the logical or mathematical model of a
particular organization of data is called a data structure. The choice of a particular
data model depends on the two considerations first; it must be rich enough in
structure to mirror the actual relationships of the data in the real world. On the other
hand, the structure should be simple enough that one can effectively process the
data whenever necessary.

D A T A S T R U C T U R E S (CSC-214)

3 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Categories of Data Structure:
The data structure can be classified in to major types:
 Linear Data Structure
 Non-linear Data Structure

1. Linear Data Structure:
A data structure is said to be linear if its elements form any sequence. There

are basically two ways of representing such linear structure in memory.
a) One way is to have the linear relationships between the elements represented

by means of sequential memory location. These linear structures are called
arrays.

b) The other way is to have the linear relationship between the elements
represented by means of pointers or links.
These linear structures are called linked lists.
The common examples of linear data structure are

 Arrays
 Queues
 Stacks
 Linked lists

2. Non-linear Data Structure:
This structure is mainly used to represent data containing a hierarchical

relationship between elements.
e.g. graphs, family trees and table of contents.

Arrays:
The simplest type of data structure is a linear (or one dimensional) array. A

list of a finite number n of similar data referenced respectively by a set of n
consecutive numbers, usually 1, 2, 3 n. if we choose the name A for the
array, then the elements of A are denoted by subscript notation
A 1, A 2, A 3 A n

or by the parenthesis notation
A (1), A (2), A (3) A (n)
or by the bracket notation
A [1], A [2], A [3] A [n]

Example:
A linear array A[8] consisting of numbers is pictured in following figure.

Linked List:
A linked list, or one way list is a linear collection of data elements, called

nodes, where the linear order is given by means of pointers. Each node is
divided into two parts:

 The first part contains the information of the element/node
 The second part contains the address of the next node (link /next

pointer field) in the list.

D A T A S T R U C T U R E S (CSC-214)

4 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

There is a special pointer Start/List contains the address of first node in the
list. If this special pointer contains null, means that List is empty.

Example:

Tree:
Data frequently contain a hierarchical relationship between various elements.

The data structure which reflects this relationship is called a rooted tree graph or,
simply, a tree.

Student

ID# Name Address Age Gender

First Middle Last

 Street Area
Graph:

Data sometimes contains a relationship between pairs of elements which is
not necessarily hierarchical in nature, e.g. an airline flights only between the cities
connected by lines. This data structure is called Graph.

Queue:
A queue, also called FIFO system, is a linear list in which deletions can take

place only at one end of the list, the Font of the list and insertion can take place only
at the other end Rear.

Stack:
It is an ordered group of homogeneous items of elements. Elements are added to
and removed from the top of the stack (the most recently added items are at the
top of the stack). The last element to be added is the first to be removed (LIFO:
Last In, First Out).

Data Structures Operations:
The data appearing in our data structures are processed by means of certain

operations. In fact, the particular data structure that one chooses for a given
situation depends largely in the frequency with which specific operations are
performed.

The following four operations play a major role in this text:

D A T A S T R U C T U R E S (CSC-214)

5 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 Traversing: accessing each record/node exactly once so that certain items in
the record may be processed. (This accessing and processing is sometimes
called “visiting” the record.)

 Searching: Finding the location of the desired node with a given key value,
or finding the locations of all such nodes which satisfy one or more conditions.

 Inserting: Adding a new node/record to the structure.
 Deleting: Removing a node/record from the structure.

D A T A S T R U C T U R E S (CSC-214)

6 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

D A T A S T R U C T U R E S (CSC-214)

7 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Decleration of the Arrays: Any array declaration contains: the array name, the
element type and the array size.

Examples:
int a[20], b[3],c[7];
float f[5], c[2];
char m[4], n[20];

Initialization of an array is the process of assigning initial values. Typically
declaration and initialization are combined.
Examples:

float, b[3]={2.0, 5.5, 3.14};
char name[4]= {‘E’,’m’,’r’,’e’};
int c[10]={0};

D A T A S T R U C T U R E S (CSC-214)

8 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

D A T A S T R U C T U R E S (CSC-214)

9 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Dynamic Arrays
Dynamic array allocation is actually a combination of pointers and dynamic memory allocation.
Whereas static arrays are declared prior to runtime and are reserved in stack memory, dynamic
arrays are created in the heap using the new and released from the heap using delete operators.

Start by declaring a pointer to whatever data type you want the array to hold. In this case I've
used int :

int *my_array;

This C++ statement simply declares an integer pointer. Remember, a pointer is a variable that
holds a memory address. Declaring a pointer doesn't reserve any memory for the array - that will
be accomplished with new. The following C++ statement requests 10 integer-sized elements be
reserved in the heap with the first element address being assigned to the pointer my_array:

my_array = new int[10];

The new operator is requesting 10 integer elements from the heap. There is a possibility that there
might not be enough memory left in the heap, in which case your program would have to properly

D A T A S T R U C T U R E S (CSC-214)

10 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

handle such an error. Assuming everything went OK, you could then use the dynamically
declared array just like the static array.

Dynamic array allocation is nice because the size of the array can be determined at runtime and
then used with the new operator to reserve the space in the heap. To illustrate I'll uses dynamic
array allocation to set the size of its array at runtime.

// array allocation to set the size of its array at runtime.
#include <iostream.h>
int main ()
{

int i,n;
int * p;

 cout << "How many numbers would you like to type? ";
 cin >> i;
 p= new int[i]; // it takes memory at run-time from Heap

if (p == NULL)
 cout << "Error: memory could not be allocated";

else
 {

for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin >> p[n];
 }

int *k=p; // to hold the base address of dynamic array
cout << "You have entered: \n";
for (n=0; n<i; n++)
{ cout << *k<< ", "; k++;}
 cout<<"\n";

 delete[] p; // it release the memory to send it back to Heap
 }
 return 0;
}

D A T A S T R U C T U R E S (CSC-214)

11 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Operations on array
1- Traversing: means to visit all the elements of the array in an

operation is called traversing.
2- Insertion: means to put values into an array
3- Deletion / Remove: to delete a value from an array.
4- Sorting: Re-arrangement of values in an array in a specific order

(Ascending / Descending) is called sorting.
5- Searching: The process of finding the location of a particular element

in an array is called searching. There are two popular searching
techniques/mechanisms :

Linear search and binary search and will be discussed later.

a) Traversing in Linear Array:
It means processing or visiting each element in the array exactly once;

Let ‘A’ is an array stored in the computer’s memory. If we want to display the
contents of ‘A’, it has to be traversed i.e. by accessing and processing each element
of ‘A’ exactly once.

The alternate algorithm for traversing (using for loop) is :

This program will traverse each element of the array to calculate
the sum and then calculate & print the average of the following
array of integers.
(4, 3, 7, -1, 7, 2, 0, 4, 2, 13)
#include <iostream.h>
#define size 10 // another way int const size = 10
int main()
{ int x[10]={4,3,7,-1,7,2,0,4,2,13}, i, sum=0,LB=0, UB=size;
float av;
for(i=LB,i<UB;i++) sum = sum + x[i];
av = (float)sum/size;
cout<< “The average of the numbers= “<<av<<endl;
return 0;

}

Algorithm: (Traverse a Linear Array) Here LA is a Linear array with lower
boundary LB and upper boundary UB. This algorithm traverses LA
applying an operation Process to each element of LA.

1. [Initialize counter.] Set K=LB.
2. Repeat Steps 3 and 4 while K≤UB.
3. [Visit element.] Apply PROCESS to LA[K].
4. [Increase counter.] Set k=K+1.
 [End of Step 2 loop.]
5. Exit.

Algorithm: (Traverse a Linear Array) This algorithm traverse a linear array LA with
lower bound LB and upper bound UB.

1. Repeat for K=LB to UB
Apply PROCESS to LA[K].

 [End of loop].
2. Exit.

D A T A S T R U C T U R E S (CSC-214)

12 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

b) Sorting in Linear Array:
Sorting an array is the ordering the array elements in ascending (increasing -
from min to max) or descending (decreasing – from max to min) order.
Example:
{2 1 5 7 4 3} {1, 2, 3, 4, 5,7} ascending order
{2 1 5 7 4 3} {7,5, 4, 3, 2, 1} descending order

Bubble Sort:
The technique we use is called “Bubble Sort” because the bigger value gradually

bubbles their way up to the top of array like air bubble rising in water, while the
small values sink to the bottom of array.

This technique is to make several passes through the array. On each pass,
successive pairs of elements are compared. If a pair is in increasing order (or the
values are identical), we leave the values as they are. If a pair is in decreasing order,
their values are swapped in the array.

B u b b le S o r t
P a s s = 1 P a s s = 2 P a s s = 3 P a s s = 4

2 1 5 7 4 3 1 2 5 4 3 7 1 2 4 3 5 7 1 2 3 4 5 7

1 2 5 7 4 3 1 2 5 4 3 7 1 2 4 3 5 7 1 2 3 4 5 7

1 2 5 7 4 3 1 2 5 4 3 7 1 2 4 3 5 7 1 2 3 4 5 7

1 2 5 7 4 3 1 2 4 5 3 7 1 2 3 4 5 7

1 2 5 4 7 3 1 2 4 3 5 7
1 2 5 4 3 7

 U n d e r l in e d p a irs s h o w th e c o m p a r is o n s . F o r e a c h p a s s th e re a re s ize -1
c o m p a r is o n s .

 To ta l n u m b e r o f c o m p a r is o n s= (s ize -1) 2

Algorithm: (Bubble Sort) BUBBLE (DATA, N)
Here DATA is an Array with N elements. This algorithm sorts the
elements in DATA.

1. for pass=1 to N-1.
2. for (i=0; i<= N-Pass; i++)
3. If DATA[i]>DATA[i+1], then:

Interchange DATA[i] and DATA[i+1].
[End of If Structure.]

[End of inner loop.]
[End of Step 1 outer loop.]

4. Exit.

D A T A S T R U C T U R E S (CSC-214)

13 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

/* This program sorts the array elements in the ascending order using
bubble sort method */

#include <iostream.h>
int const SIZE = 6
void BubbleSort(int [], int);
int main()
{
int a[SIZE]= {77,42,35,12,101,6};
int i;
cout<< “The elements of the array before sorting\n”;
for (i=0; i<= SIZE-1; i++) cout<< a[i]<<”, “;
BubbleSort(a, SIZE);
cout<< “\n\nThe elements of the array after sorting\n”;
for (i=0; i<= SIZE-1; i++) cout<< a[i]<<”, “;
return 0;
}

void BubbleSort(int A[], int N)
{

int i, pass, hold;
for (pass=1; pass<= N-1; pass++)
{
for (i=0; i<= SIZE-pass; i++)
{

if(A[i] >A[i+1])
{

hold =A[i];
A[i]=A[i+1];
A[i+1]=hold;

}
}

}
}

Home Work
Write a program to determine the median of the array given below:
(9, 4, 5, 1, 7, 78, 22, 15, 96, 45,25)

Note that the median of an array is the middle element of a sorted array.

D A T A S T R U C T U R E S (CSC-214)

14 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Searching in Linear Array:
The process of finding a particular element of an array is called Searching”. If

the item is not present in the array, then the search is unsuccessful.
There are two types of search (Linear search and Binary Search)
Linear Search:

The linear search compares each element of the array with the search key
until the search key is found. To determine that a value is not in the array, the
program must compare the search key to every element in the array. It is also called
“Sequential Search” because it traverses the data sequentially to locate the
element.

/* This program use linear search in an array to find the LOCATION of the given
Key value */

/* This program is an example of the Linear Search*/
#include <iostream.h>
int const N=10;
int LinearSearch(int [], int); // Function Prototyping
int main()
{ int A[N]= {9, 4, 5, 1, 7, 78, 22, 15, 96, 45}, Skey, LOC;

cout<<“ Enter the Search Key\n”;
cin>>Skey;
LOC = LinearSearch(A, Skey); // call a function
if(LOC == -1)

cout<<” The search key is not in the array\n Un-Successful Search\n”;
else

cout<<” The search key “<<Skey<< “ is at location ”<<LOC<<endl;
return 0;

}

int LinearSearch (int b[], int skey) // function definition
{

int i;
for (i=0; i<= N-1; i++) if(b[i] == skey) return i;

 return -1;
}

Algorithm: (Linear Search)
 LINEAR (A, SKEY)

Here A is a Linear Array with N elements and SKEY is a given item
of information to search. This algorithm finds the location of SKEY in
A and if successful, it returns its location otherwise it returns -1 for
unsuccessful.

1. Repeat for i = 0 to N-1
2. if(A[i] = SKEY) return i [Successful Search]

[End of loop]

3. return -1 [Un-Successful]
4. Exit.

D A T A S T R U C T U R E S (CSC-214)

15 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Binary Search:
It is useful for the large sorted arrays. The binary search algorithm can only

be used with sorted array and eliminates one half of the elements in the array
being searched after each comparison. The algorithm locates the middle element of
the array and compares it to the search key. If they are equal, the search key is
found and array subscript of that element is returned. Otherwise the problem is
reduced to searching one half of the array. If the search key is less than the middle
element of array, the first half of the array is searched. If the search key is not the
middle element of in the specified sub array, the algorithm is repeated on one
quarter of the original array. The search continues until the sub array consist of one
element that is equal to the search key (search successful). But if Search-key not
found in the array then the value of END of new selected range will be less than the
START of new selected range. This will be explained in the following example:

68A[9]
37A[8]
25A[7]
22A[6]
17A[5]
15A[4]
11A[3]
9A[2]
5A[1]
3A[0] Start=0

End = 9
Mid=int(Start+End)/2
Mid= int (0+9)/2
Mid=4

Start=4+1 = 5
End = 9
Mid=int(5+9)/2 = 7

Start = 5
End = 7 – 1 = 6
Mid = int(5+6)/2 =5

Start = 5+1 = 6
End = 6
Mid = int(6 + 6)/2 = 6

Found at location 6
Successful Search

Search-Key = 22

68A[9]
37A[8]
25A[7]
22A[6]
17A[5]
15A[4]
11A[3]
9A[2]
5A[1]
3A[0]

Search-Key = 8
Start=0
End = 9
Mid=int(Start+End)/2
Mid= int (0+9)/2
Mid=4

Start=0
End = 3
Mid=int(0+3)/2 = 1

Start = 1+1 = 2
End = 3
Mid = int(2+3)/2 =2

Start = 2
End = 2 – 1 = 1

End is < Start
Un-Successful Search

Binary Search

D A T A S T R U C T U R E S (CSC-214)

16 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

// C++ Code for Binary Search
#include <iostream.h>
int const N=10;
int BinarySearch(int [], int); // Function Prototyping
int main()
{ int A[N]= {3, 5, 9, 11, 15, 17, 22, 25, 37, 68}, SKEY, LOC;

cout<<” Enter the Search Key\n ”;
cin>>SKEY);
LOC = BinarySearch(A, SKEY); // Function call
if(LOC == -1)

cout<<” The search key is not in the array\n”;
else

cout<<” The search key “<<SKEY << “ is at location “<<LOC<<endl;
return 0;
}
int BinarySearch (int A[], int skey)
{

int START=0, END= N-1, MID=int((START+END)/2), LOC;
while(START <= END && A[MID] != skey)
{

if(skey < A[MID])
END = MID - 1;

Else
START = MID + 1;

MID=int((START+END)/2)
}

If(A[MID] == skey) LOC=MID else LOC= -1;
return LOC;

}

Algorithm: (Binary Search)
 Here A is a sorted Linear Array with N elements and SKEY is a given item

of information to search. This algorithm finds the location of SKEY in
A and if successful, it returns its location otherwise it returns -1 for
unsuccessful.

BinarySearch (A, SKEY)
1. [Initialize segment variables.]
 Set START=0, END=N-1 and MID=INT((START+END)/2).
2. Repeat Steps 3 and 4 while START ≤ END and A[MID]≠SKEY.
3. If SKEY< A[MID]. Then

Set END=MID-1.
Else Set START=MID+1.
[End of If Structure.]

4. Set MID=INT((START +END)/2).
 [End of Step 2 loop.]
5. If A[MID]= SKEY then Set LOC= MID
 Else:

Set LOC = -1
 [End of IF structure.]
6. return LOC and Exit

D A T A S T R U C T U R E S (CSC-214)

17 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Computational Complexity of Binary Search
The Computational Complexity of the Binary Search algorithm is measured
by the maximum (worst case) number of Comparisons it performs for searching
operations.
The searched array is divided by 2 for each comparison/iteration.
Therefore, the maximum number of comparisons is measured by:
log2(n) where n is the size of the array
Example:

If a given sorted array 1024 elements, then the maximum number of
comparisons required is:
log2(1024) = 10 (only 10 comparisons are enough)

Computational Complexity of Linear Search
Note that the Computational Complexity of the Linear Search is the
maximum number of comparisons you need to search the array. As you are
visiting all the array elements in the worst case, then, the number of
comparisons required is:

n (n is the size of the array)
Example:

If a given an array of 1024 elements, then the maximum number of
comparisons required is:

n-1 = 1023 (As many as 1023 comparisons may be required)

D A T A S T R U C T U R E S (CSC-214)

18 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Structures A structure is a collection of logically related variables under a single
unit/name. These variables can be of different types, and each has a name which is
used to select it from the structure. A structure is a convenient way of grouping
several pieces of related information together. They are most commonly used for
record-oriented data.
Example: How to declare a structure

 struct Rectangle // this is type/name for structure
 { float Length;

 float width;
 float area;
 };

 NOTE: declaration of structure does not occupy space in memory. One has to
create the variables for the struct and variable will take spaces in memory. For
example:

Following instruction will just
occupy space
Struct Rectangle Rect;

Following instruction will
occupy space and also
initialize members.
Struct Rectangle Rect={10, 8, 0};

Here is an other example of structure declaration.

struct Student {
 char name[20];
 char course[30];
 int age;
 int year;

};

struct Student S1; // Here s1 is a variable of Student type and has
four members.

A structure is usually declared before main() function. In such cases the structure
assumes global status and all the functions can access the structure. The members
themselves are not variables they should be linked to structure variables in order to make

Length

Width

Area

Rect

Length

Width

Area

Rect

10

8

0

D A T A S T R U C T U R E S (CSC-214)

19 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

them meaningful members. The link between a member and a variable is established
using the membership operator ‘.’ Which is also known as dot / membership operator.

For example:
strcpy(S1.name, “Nazir Hussain”);
strcpy(S1.course, “CS-214 Data Structures”);
S1.age = 21;
S1.year = 1989;

Note: following is the work to do in the Lab.

1- Run this program and examine its behavior.

In the following program you will see the way to initialize the structure variables.

#include <iostream.h>
#include <conio.h>
#include <iomanip.h>

struct student
{ int ID; // 4 bytes
 char name[10]; // 10 bytes
 float grade; // 4 bytes
 int age; // 4
 char phone[10]; // 10
 char e_mail[16]; // 16
};
// Prototyping of the functions
void display(struct student);

void main()
{
struct student s1={55,"Amir Ali",3.5f,23,"6535418","amir@yahoo.com"};

 struct student s2={26,"Mujahid",2.9888f,25,"5362169", "muj@hotmail.com"};
 struct student s3={39,"M Jamil",3.108f,30,"2345677","jam@hotmail.com"};
 struct student s4={44,"Dilawar",2.7866f,31,"5432186","dil@hotmail.com"};
 struct student s5={59,"S.Naveed",2.9f,27,"2345671","navee@yahoo.com"};

cout<<" Students Records Sheet\n";
cout<<" ~~~~~~~~~~~~~~~~~~~~~~\n\n";

 cout<<"ID# NAME GRADE AGE PHONE E-MAIL\n";
 cout<<"~~~ ~~~~ ~~~~~ ~~~ ~~~~~ ~~~~~~~\n";
 display(s1); // structure pass to function
 display(s2); // structure pass to function
 display(s3);
 display(s4);
 display(s5);
 }

void display(struct student s)
{ cout<<setw(3)<< s.ID <<setw(12)<< s.name <<setw(8)<< setiosflags
(ios::showpoint)<<setprecision(2)<< s.grade<<setw(5)<< s.age
<<setw(10)<< s.phone<< setw(18)<<s.e_mail<<endl;
}

D A T A S T R U C T U R E S (CSC-214)

20 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

2- Run this program and examine its behavior.
// In this program you will see the structures (members Manipulation),
// Passing structures to functions:

#include <iostream.h>
#include <iomanip.h>

struct STU_GRADES
{ char name [30];

int exam1;
 int exam2;
 int exam3;

int final;
 float sem_ave;
 char letter_grade;
};

//inputs the data items for a student, structure
//is passed by reference
struct STU_GRADES get_stu ()
{ struct STU_GRADES student;

cout << "\n\n\n\n Enter the information for a student\n";
cout << " Name: ";
cin.getline (student.name, 30, '\n');
cout << " Exam1: ";
cin >> student.exam1;
cout << " Exam2: ";
cin >> student.exam2;
cout << "exam3: ";
cin >> student.exam3;
cout << "final: ";
cin >> student.final;

 return student;
}

//displays a student's info.
//structure is passed by value
void print_stu (struct STU_GRADES stu)
{

cout << "\n\n\nGrade report for: " << stu.name<<endl;
cout << "\nexam 1\texam 2\texam 3\tfinal\n";
cout << stu.exam1 << "\t" << stu.exam2 << "\t"

<< stu.exam3 << "\t" << stu.final;
cout << "\n\n\nsemester average: " << setiosflags (ios::fixed)

<< setprecision (2) << stu.sem_ave;
cout << "\nsemester grade: " << stu.letter_grade;

}

float calc_ave (int ex1, int ex2, int ex3, int final)
{

float ave;

ave = float (ex1 + ex2 + ex3 + final)/4.0f;
return ave;

D A T A S T R U C T U R E S (CSC-214)

21 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

}

char assign_let (float average)
{

char let_grade;

if (average >= 90)
let_grade = 'A';
else if (average >= 80)

let_grade = 'B';
else if (average >= 70)

let_grade = 'C';
else if (average >= 60)

let_grade = 'D';
else let_grade = 'F';

return let_grade;
}

int main()
{

struct STU_GRADES stu;
char more;

do
{

//pass the entire structure
stu= get_stu ();

 //pass elements of the strucutre
stu.sem_ave = calc_ave (stu.exam1, stu.exam2,

stu.exam3, stu.final);
 //pass elements of the structure

stu.letter_grade = assign_let (stu.sem_ave);
 //pass the entire structure

print_stu (stu);
cout << "\n\n\n Enter another student? (y/n) ";
cin >> more;
//grab the carriage return since
//character data is input next
cin.ignore ();

} while (more == 'y' || more == 'Y');

return 0;
}

D A T A S T R U C T U R E S (CSC-214)

22 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Pointers
Pointers are a fundamental part of C. If you cannot use pointers properly then you have
basically lost all the power and flexibility that C allows. The secret to C is in its use of
pointers.

C uses pointers a lot. Why?:

 It is the only way to express some computations.
 It produces compact and efficient code.
 It provides a very powerful tool.

C uses pointers explicitly with:

 Arrays,
 Structures,
 Functions.

NOTE: Pointers are perhaps the most difficult part of C to understand. C's
implementation is slightly different from other languages.

What is a Pointer?
A pointer is a variable which contains the address in memory of another variable. We can
have a pointer to any variable type.

The operator & gives the “address of a variable”.

The indirection or dereference operator * gives the “contents of an object pointed to
by a pointer”.

To declare a pointer to a variable do:

int *p;

NOTE: We must associate a pointer to a particular type: You can't assign the address of
a short int to a long int, for instance.

 long int A=10; short int B= 5; long int *p = &A; // worng assignment;
Similarly: float *T = &B; // wong pointer assignment.

D A T A S T R U C T U R E S (CSC-214)

23 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Consider the effect of the following code:
int x = 1, y = 2;

 int *ip;
 ip = &x;
y = *ip;
x = 5;
*ip = 3;

It is worth considering what is going on at the machine level in memory to fully
understand how pointer work. Consider following Fig. Assume for the sake of this
discussion that variable x resides at memory location 100, y at 200 and ip at 1000. Note
A pointer is a variable and thus its values need to be stored somewhere. It is the nature of
the pointers value that is new.

Now the assignments x = 1 and y = 2 obviously load these values into the variables. ip is
declared to be a pointer to an integer and is assigned to the address of x (&x). So ip gets
loaded with the value 100 which is the address of x.

Next y gets assigned to the contents of ip. In this example ip currently points to memory
location 100 -- the location of x. So y gets assigned to the values of x -- which is 1. After
that assignment of 5 to variable x.

Finally we can assign a value 3 to the contents of a pointer (*ip).

D A T A S T R U C T U R E S (CSC-214)

24 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

IMPORTANT: When a pointer is declared it does not point anywhere. You
must set it to point somewhere before you use it.

So ...

int *ip;
 *ip = 50;

will generate an error (program crash!!).

The correct use is:

int *ip;
 int x;
ip = &x; // setting the pointer

 *ip = 100;

Here is another example program which will describes the usage of
pointers and the contents of pointers.

#include <iostream.h>
int main ()
{ int a=3, b=5, S=0, D=0, M=0;
 int *p1, *p2, *p3, *p4, *p5; // five pointers are declared
 // assigning address of a, b, S, D and M to these pointers

 p1 = &a; p2= &b; p3 = &S; p4 = &D; p5=&M;
 *p3 = *p1 + *p2; // same as s = a + b;

cout<< *p3<<endl; // it prints 8
cout<< p1<<endl; // it prints the address of a

 D = *p1 - b; // it calculates -2
cout<< *p4<<endl; // it prints -2

 *p5 = a * *p2; // it calculates 15
cout<< M<<endl; // it prints 15

 return 0;
}

The above program has been discussed in the class lecture in detail. If you still have
some confusion, contact the instructor verbally or through the e-mail.

D A T A S T R U C T U R E S (CSC-214)

25 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Pointers and Arrays
Pointers and arrays are very closely linked in C.
Hint: think of array elements arranged in consecutive / successive memory
locations.
Consider the following:

int a[12]= { 5, 2 , 6, 9, 12, 7, 56, 34, 11, 76, 37, 55,69};

The elements of the above given array will be stored as pictured in the following
figure. Each element of the array occupies 4 bytes (due to int). Assume first
element is stored at address 100, second element will store at address 104 and so
on:

100 104 108 112 116 120 124 128 132 136 140 144
5 2 6 9 12 7 56 34 76 37 55 69

a[0] a[1] a[2] a[3] a[11]

Following is the c-language code which prints contents of all elements
using pointers.

#include <iostream.h>
int main()
{ int a[12]= { 5, 2 , 6, 9, 12, 7, 56, 34, 11, 76, 37, 55,69};
 int i, *p;

// printing array elements using index / subscript
 for (i = 0 ; i < 12 ; i++) cout<<a[i]<< ”, “;

 // Following will store the address of a[0] into p (pointer)
p = a; // same as p = a[0];
for (i = 0 ; i < 12 ; i++)

{ cout<<*p<< ”, “; // prints the contents of the address
p++; // it shift the pointer to next element of the array

}
return 0;

}

WARNING: There is no bound checking of arrays and pointers so you can
easily go beyond array memory and overwrite other things.
C however is much more fine in its link between arrays and pointers.
For example we can just type

p = a; // here p is pointer and a is an array.
instead of p = &a[0];

A pointer is a variable. We can do p = a and p++. An Array is not a
variable. So a = p and a++ ARE ILLEGAL.
This stuff is very much important. Make sure you understand it. We will
see a lot more of this.

D A T A S T R U C T U R E S (CSC-214)

26 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Pointer and Functions
Let us now examine the close relationship between pointers and C's other major parts.
We will start with functions.

When C passes arguments to functions it passes them by value.

There are many cases when we may want to alter a passed argument in the function and
receive the new value back once to function has finished. C uses pointers explicitly to do
this. The best way to study this is to look at an example where we must be able to
receive changed parameters.

Let us try and write a function to swap variables around?

Pointers provide the solution: Pass the address of the variables to the functions and
access address in function.

Thus our function call in our program would look like this:

swap(&x, &y);

The Code to swap is fairly straightforward:

// This program swap / interchange the values of two variables
#include <iostream.h>
void swap(int *, int *); // function prototyping
int main()
{ int a, b;
 a = 1;

 b = 999;
 cout<<” a = “<< a << ” and b= “<<b<<endl;
 swap(&a, &b);
 cout<< “\n After Swaping the new values of a and b \n”;
 cout<<” a = “<< a << ” and b= “<<b<<endl;
 return 0;
}

void swap(int *px, int *py)
{ int temp;

/* contents of pointer */
temp = *px;

 *px = *py;
 *py = temp;

}

The explanation of the above program is given on the next page:

D A T A S T R U C T U R E S (CSC-214)

27 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

D A T A S T R U C T U R E S (CSC-214)

28 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Pointers and Structures
1- Program to describe the pointer to stuctures
#include <iostream.h>
struct rectangle
 { float length;
 float width;
 float area;
 };
int main()
{ struct rectangle Rect;

Rect . length = 12.5 ;
Rect . width = 6.78;
Rect . area = Rect . length * Rect . width;
struct rectangle *P;
P = &Rect;
cout<<”\n Length= “<< P ->length;
cout<<”\n Width= “<< P -> width;
cout<<”\n Area= “<< P -> area;
return 0;

}
2- Another program to describe the pointer to structures. _
// It is assumed that structure variable is stored at location 2000
// in memory
#include <iostream.h>
#include <string.h>

My_struct 2000
struct tag{ /* the structure type */
 char lname[20]; /* last name */ lname
 char fname[20]; /* first name */
 int age; /* age */
 };

fname
struct tag my_struct; /* define the structure */
void show_name(struct tag *p); /* function prototype */
int main() age
{
 struct tag *st_ptr; /* a pointer to a structure */
 strcpy(my_struct.lname,"Shahid");
 strcpy(my_struct.fname,"Hamza");

cout<<my_struct.fname<<endl; st_ptr
cout<<my_struct.lname<<endl;

 my_struct.age = 19;
 st_ptr = &my_struct; /* points the pointer to my_struct */
 show_name(st_ptr); /* pass the pointer to function*/
 return 0;
}
void show_name(struct tag *p)
{ cout<<p->fname<<endl; /* p points to a structure */

cout<<p->lname<<endl; p
cout<<p->age<<endl;

}

shahid

Hamza

19

2000

2000

Length

Widt
h

Area

Rect
5000

D A T A S T R U C T U R E S (CSC-214)

29 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

These are fairly straight forward and are easily defined. Consider the following:

the operator lets us access a member of the structure pointed to by a pointer.i.e.:

p -> fname will access the member “fname” of “p” pointer.

P -> age will access the member “age” of “p” pointer.

See another example, which is a little bit complex:

struct Node {
int value;
struct Node* next;

};
// Allocate the pointers

struct Node *x;
struct Node *y;
struct Node *z;

// Allocate the pointees In Simple c-language
x = new (Node); // (struct Node*) malloc(sizeof(Node));
y = new (Node); // (struct Node*) malloc(sizeof(Node));
z = new (Node); // (struct Node*) malloc(sizeof(Node));

// Put the numbers in the pointees
x->value = 34;
y->value = 44;
z->value = 65;

// Put the pointers in the pointees
x->next = y;
y->next = z;
z->next = x;

}

D A T A S T R U C T U R E S (CSC-214)

30 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Home Work
Exercise -1

Write a C program to read through a 10 elements array of integer type using pointers.
Search through this array to find the biggest and smallest value.

Exercise - 2

Write a program that takes three variable (a, b, c). Rotates the values stored so that value
a goes to b, b to c and c to a.

Note: make a function which takes pointers of these variables and using pointers it
rotates the values.

D A T A S T R U C T U R E S (CSC-214)

31 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

STACKS:
It is an ordered group of homogeneous items of elements. Elements are added to
and removed from the top of the stack (the most recently added items are at the
top of the stack). The last element to be added is the first to be removed (LIFO:
Last In, First Out).

A stack is a list of elements in which an element may be inserted or deleted only at
one end, called TOP of the stack. The elements are removed in reverse order of that
in which they were inserted into the stack.

Basic operations:
These are two basic operations associated with stack:

 Push() is the term used to insert/add an element into a stack.
 Pop() is the term used to delete/remove an element from a stack.

Other names for stacks are piles and push-down lists.

There are two ways to represent Stack in memory. One is using array and other is
using linked list.

Array representation of stacks:
Usually the stacks are represented in the computer by a linear array. In the following
algorithms/procedures of pushing and popping an item from the stacks, we have
considered, a linear array STACK, a variable TOP which contain the location of the
top element of the stack; and a variable STACKSIZE which gives the maximum
number of elements that can be hold by the stack.

Data 1 Data 2 Data 3

STACK

2

0 1 2 3 4 5 6 7 8

9TOP STACKSIZE

D A T A S T R U C T U R E S (CSC-214)

32 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Push Operation

Push an item onto the top of the stack (insert an item)

D A T A S T R U C T U R E S (CSC-214)

33 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Pop Operation

Algorithm for PUSH:

Algorithm for POP:

Pop an item off the top of the stack (delete an item)

Algorithm: PUSH(STACK, TOP, STACKSIZE, ITEM)

1. [STACK already filled?]
 If TOP=STACKSIZE-1, then: Print: OVERFLOW / Stack Full, and Return.
2. Set TOP:=TOP+1. [Increase TOP by 1.]
3. Set STACK[TOP]=ITEM. [Insert ITEM in new TOP position.]
4. RETURN.

Algorithm: POP(STACK, TOP, ITEM)
This procedure deletes the top element of STACK and assigns it to the
variable ITEM.

1. [STACK has an item to be removed? Check for empty stack]
 If TOP=-1, then: Print: UNDERFLOW/ Stack is empty, and Return.
2. Set ITEM=STACK[TOP]. [Assign TOP element to ITEM.]
3. Set TOP=TOP-1. [Decrease TOP by 1.]
4. Return.

D A T A S T R U C T U R E S (CSC-214)

34 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Here are the minimal operations we'd need for an abstract stack (and their typical
names):

o Push: Places an element/value on top of the stack.
o Pop: Removes value/element from top of the stack.
o IsEmpty: Reports whether the stack is Empty or not.
o IsFull: Reports whether the stack is Full or not.

1. Run this program and examine its behavior.
// A Program that exercise the operations on Stack Implementing Array
// i.e. (Push, Pop, Traverse)
#include <conio.h>
#include <iostream.h>
#include <process.h>
#define STACKSIZE 10 // int const STACKSIZE = 10;
// global variable and array declaration
int Top=-1;
int Stack[STACKSIZE];

void Push(int); // functions prototyping
int Pop(void);
bool IsEmpty(void);
bool IsFull(void);
void Traverse(void);

int main()
{ int item, choice;
 while(1)
 {

cout<< "\n\n\n\n\n";
cout<< " ******* STACK OPERATIONS ********* \n\n";
cout<< " 1- Push item \n 2- Pop Item \n";
cout<< " 3- Traverse / Display Stack Items \n 4- Exit.";
cout<< " \n\n\t Your choice ---> ";
cin>> choice;

 switch(choice)
{ case 1: if(IsFull())cout<< "\n Stack Full/Overflow\n";

 else
 { cout<< "\n Enter a number: "; cin>>item;
 Push(item); }
 break;

 case 2: if(IsEmpty())cout<< "\n Stack is empty) \n";
 else

 {item=Pop();
cout<< "\n deleted from Stack = "<<item<<endl;}

 break;
 case 3: if(IsEmpty())cout<< "\n Stack is empty) \n";

 else
 { cout<< "\n List of Item pushed on Stack:\n";
 Traverse();

 }
 break;

D A T A S T R U C T U R E S (CSC-214)

35 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 case 4: exit(0);
 default:

cout<< "\n\n\t Invalid Choice: \n";
 } // end of switch block

 } // end of while loop

 } // end of of main() function

void Push(int item)
{
 Stack[++Top] = item;
}

int Pop()
{
 return Stack[Top--];
}

bool IsEmpty()
{ if(Top == -1) return true else return false; }

bool IsFull()
{ if(Top == STACKSIZE-1) return true else return false; }

void Traverse()
 { int TopTemp = Top;
 do{ cout<< Stack[TopTemp--]<<endl;} while(TopTemp>= 0);
 }

1- Run this program and examine its behavior.

// A Program that exercise the operations on Stack
// Implementing POINTER (Linked Structures) (Dynamic Binding)
// Programed by SHAHID LONE
// This program provides you the concepts that how STACK is
// implemented using Pointer/Linked Structures

#include <iostream.h.h>
#include <process.h>

struct node {
int info;
struct node *next;

 };

struct node *TOP = NULL;

void push (int x)
{ struct node *NewNode;
 NewNode = new (node); // (struct node *) malloc(sizeof(node));

 if(NewNode==NULL) { cout<<"\n\n Memeory Crash\n\n";
 return; }

 NewNode->info = x;
 NewNode->next = NULL;

D A T A S T R U C T U R E S (CSC-214)

36 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

if(TOP == NULL) TOP = NewNode;
 else
 { NewNode->next = TOP;
 TOP=NewNode;
 }
}
struct node* pop ()
{ struct node *T;

T=TOP;
TOP = TOP->next;

 return T;
}

void Traverse()
{ struct node *T;
 for(T=TOP ; T!=NULL ;T=T->next) cout<<T->info<<endl;
}

bool IsEmpty()
{ if(TOP == NULL) return true; else return false; }

int main ()
{ struct node *T;

int item, ch;
 while(1)
 { cout<<"\n\n\n\n\n\n ***** Stack Operations *****\n";

cout<<"\n\n 1- Push Item \n 2- Pop Item \n";
 cout<<" 3- Traverse/Print stack-values\n 4- Exit\n\n";
 cout<<"\n Your Choice --> ";

cin>>ch;
 switch(ch)
 { case 1:

cout<<"\nPut a value: ";
cin>>item;

 Push(item);
 break;

case 2:
 if(IsEmpty()) {cout<<"\n\n Stack is Empty\n";

break;
}

 T= Pop();
cout<< T->info <<"\n\n has been deleted \n";

 break;
case 3:

if(IsEmpty()) {cout<<"\n\n Stack is Empty\n";
break;

}
Traverse();
break;

case 4:
exit(0);

 } // end of switch block
 } // end of loop
 return 0;
} // end of main function

D A T A S T R U C T U R E S (CSC-214)

37 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Application of the Stack (Arithmetic Expressions)

I N F I X , P O S T F I X A N D P R E F I X
N O T A T I O N S

In f ix , P o s t f ix a n d P re f ix n o ta t io n s a re u s e d in m a n y
c a lc u la to rs . T h e e a s ie s t w a y to im p le m e n t th e
P o s tf ix a n d P re f ix o p e ra t io n s is to u s e s ta c k . In f ix
a n d p re f ix n o ta t io n s c a n b e c o n v e r te d to p o s t f ix
n o ta t io n u s in g s ta c k .
T h e re a s o n w h y p o s t f ix n o ta t io n is p re fe r re d is th a t
y o u d o n ’t n e e d a n y p a re n th e s is a n d th e re is n o
p re s c ie n c e p ro b le m .

 Stacks are used by compilers to help in the process of converting infix to postfix
arithmetic expressions and also evaluating arithmetic expressions. Arithmetic
expressions consisting variables, constants, arithmetic operators and parentheses.
Humans generally write expressions in which the operator is written between the
operands (3 + 4, for example). This is called infix notation. Computers “prefer”
postfix notation in which the operator is written to the right of two operands. The
preceding infix expression would appear in postfix notation as 3 4 +.
To evaluate a complex infix expression, a compiler would first convert the expression
to postfix notation, and then evaluate the postfix version of the expression. We use
the following three levels of precedence for the five binary operations.

Precedence Binary Operations
Highest Exponentiations (^)
Next Highest Multiplication (*), Division (/) and Mod (%)
Lowest Addition (+) and Subtraction (-)

For example:

 (66 + 2) * 5 – 567 / 42
to postfix

66 22 + 5 * 567 42 / –

Transforming Infix Expression into Postfix Expression:
The following algorithm transform the infix expression Q into its equivalent

postfix expression P. It uses a stack to temporary hold the operators and left
parenthesis.
The postfix expression will be constructed from left to right using operands from Q
and operators popped from STACK.

D A T A S T R U C T U R E S (CSC-214)

38 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Convert Q: A+(B * C – (D / E ^ F) * G) * H into postfix form showing stack status .

Now add “)” at the end of expression A+(B * C – (D / E ^ F) * G) * H)
and also Push a “(“ on Stack.

Symbol Scanned Stack Expression Y
(

A (A
+ (+ A
((+(A
B (+(AB
* (+(* AB
C (+(* ABC
- (+(- ABC*
((+(-(ABC*
D (+(-(ABC*D
/ (+(-(/ ABC*D
E (+(-(/ ABC*DE
^ (+(-(/^ ABC*DE
F (+(-(/^ ABC*DEF
) (+(- ABC*DEF^/
* (+(-* ABC*DEF^/
G (+(-* ABC*DEF^/G
) (+ ABC*DEF^/G*-
* (+* ABC*DEF^/G*-
H (+* ABC*DEF^/G*-H
) empty ABC*DEF^/G*-H*+

Algorithm: Infix_to_PostFix(Q, P)
Suppose Q is an arithmetic expression written in infix notation. This
algorithm finds the equivalent postfix expression P.

1. Push “(“ onto STACK, and add “)” to the end of Q.
2. Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until

the STACK is empty:
3. If an operand is encountered, add it to P.
4. If a left parenthesis is encountered, push it onto STACK.
5. If an operator © is encountered, then:

a) Repeatedly pop from STACK and add to P each operator
 (on the top of STACK) which has the same or

 higher precedence/priority than ©
b) Add © to STACK.

[End of If structure.]
6. If a right parenthesis is encountered, then:

a) Repeatedly pop from STACK and add to P each operator (on the
top of STACK) until a left parenthesis is encountered.

b) Remove the left parenthesis. [Do not add the left parenthesis to P.]
[End of If structure.]

[End of Step 2 loop.]
7. Exit.

D A T A S T R U C T U R E S (CSC-214)

39 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Evaluation of Postfix Expression:
If P is an arithmetic expression written in postfix notation. This algorithm

uses STACK to hold operands, and evaluate P.

For example:
Following is an infix arithmetic expression

(5 + 2) * 3 – 9 / 3
And its postfix is:

5 2 + 3 * 9 3 / –
Now add “$” at the end of expression as a sentinel.

5 2 + 3 * 8 4 / – $
 Scanned Elements Stack Action to do _

5 5 Pushed on stack

2 5, 2 Pushed on Stack

+ 7 Remove the two top elements and calculate
 5 + 2 and push the result on stack

3 7, 3 Pushed on Stack

* 21 Remove the two top elements and calculate
 7 * 3 and push the result on stack

8 21, 8 Pushed on Stack

 4 21, 8, 4 Pushed on Stack

/ 21, 2 Remove the two top elements and calculate
 8 / 2 and push the result on stack

- 19 Remove the two top elements and calculate
 21 - 2 and push the result on stack

$ 19 Sentinel $ encouter , Result is on top of the STACK

Algorithm: This algorithm finds the VALUE of P written in postfix notation.

1. Add a Dollar Sign ”$” at the end of P. [This acts as sentinel.]
2. Scan P from left to right and repeat Steps 3 and 4 for each element of P

until the sentinel “$” is encountered.
3. If an operand is encountered, put it on STACK.
4. If an operator © is encountered, then:

a) Remove the two top elements of STACK, where A is the top
element and B is the next-to—top-element.
b) Evaluate B © A.
c) Place the result of (b) back on STACK.

[End of If structure.]
[End of Step 2 loop.]

5. Set VALUE equal to the top element on STACK.
6. Exit.

D A T A S T R U C T U R E S (CSC-214)

40 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Following code will transform an infix arithmetic expression into Postfix arithmetic
expression. You will also see the Program which evaluates a Postfix expression.
// This program provides you the concepts that how an infix
// arithmetic expression will be converted into post-fix expression
// using STACK

// Conversion Infix Expression into Post-fix
// NOTE: ^ is used for raise-to-the-power

#include<iostream.h>
#include<conio.h>
#include<string.h>
int main()
{ int const null=-1;
 char Q[100],P[100],stack[100];// Q is infix and P is postfix array
 int n=0; // used to count item inserted in P
 int c=0; // used as an index for P
 int top=null; // it assign -1 to top
 int k,i;

cout<<“Put an arithematic INFIX _Expression\n\n\t\t";
cin.getline(Q,99); // reads an infix expression into Q as string

 k=strlen(Q); // it calculates the length of Q and store it in k
// following two lines will do initial work with Q and stack

 strcat(Q,”)”); // This function add) at the and of Q
 stack[++top]='('; // This statement will push first (on Stack

 while(top!= null)
 {
 for(i=0;i<=k;i++)
 {

switch(Q[i])
{

 case '+':
 case '-':

 for(;;)
 {
 if(stack[top]!='(')

{ P[c++]=stack[top--];n++; }
 else

 break;
 }

 stack[++top]=Q[i];
 break;

 case '*':
 case '/':
 case '%':

 for(;;)
 {if(stack[top]=='(' || stack[top]=='+' ||

stack[top]=='-') break;
 else

{ P[c++]=stack[top--]; n++; }

D A T A S T R U C T U R E S (CSC-214)

41 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 }

 stack[++top]=Q[i];
 break;

 case '^':
 for(;;)
 {
 if(stack[top]=='(' || stack[top]=='+' ||

 stack[top]=='-' || stack[top]=='/' ||
 stack[top]=='*' || stack[top]=='%') break;

else
{ P[c++]=stack[top--]; n++; }

 }

 stack[++top]=Q[i];
 break;

 case '(':
 stack[++top]=Q[i];
 break;

 case ')':
 for(;;)
 {
 if(stack[top]=='(') {top--; break;}
 else { P[c++]=stack[top--]; n++;}
 }
 break;

 default : // it means that read item is an oprand
 P[c++]=Q[i];
 n++;

} //END OF SWITCH
} //END OF FOR LOOP

 } //END OF WHILE LOOP

P[n]='\0'; // this statement will put string terminator at the
 // end of P which is Postfix expression
cout<<"\n\nPOSTFIX EXPRESION IS \n\n\t\t"<<P<<endl;

} //END OF MAIN FUNCTION

D A T A S T R U C T U R E S (CSC-214)

42 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

// This program provides you the concepts that how a post-fixed
// expression is evaluated using STACK. In this program you will
// see that linked structures (pointers are used to maintain the stack.

// NOTE: ^ is used for raise-to-the-power

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include<math.h>
#include <stdlib.h>
#include <ctype.h>

struct node {
int info;
struct node *next;

 };

struct node *TOP = NULL;

void push (int x)
{ struct node *Q;

 // in c++ Q = new node;
Q = (struct node *) malloc(sizeof(node)); // creation of new node

 Q->info = x;
 Q->next = NULL;
 if(TOP == NULL) TOP = Q;
 else

{ Q->next = TOP;
TOP=Q;

}
}

struct node* pop ()
{ struct node *Q;
 if(TOP==NULL) { cout<<"\nStack is empty\n\n";

exit(0);
}

 else
{Q=TOP;
TOP = TOP->next;

 return Q;
 }

}

int main(void)
{char t;
struct node *Q, *A, *B;
cout<<"\n\n Put a post-fix arithmatic expression end with $: \n ";

 while(1)
 { t=getche(); // this will read one character and store it in t

if(isdigit(t)) push(t-'0'); // this will convert char into int
else if(t==' ')continue;
else if(t=='$') break;

D A T A S T R U C T U R E S (CSC-214)

43 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

else
{ A= pop();
 B= pop();
switch (t)

{
case '+':

 push(B->info + A->info);
 break;

case '-':
 push(B->info - A->info);
 break;

case '*':
 push(B->info * A->info);
 break;

case '/': push(B->info / A->info);
 break;

case '^': push(pow(B->info, A->info));
 break;

default: cout<<"Error unknown operator";
 } // end of switch
 } // end of if structure
} // end of while loop

Q=pop(); // this will get top value from stack which is result
cout<<"\n\n\nThe result of this expression is = "<<Q->info<<endl;
return 0;

} // end of main function

D A T A S T R U C T U R E S (CSC-214)

44 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Queue:
A queue is a linear list of elements in which deletion can take place only at

one end, called the front, and insertions can take place only at the other end, called
the rear. The term “front” and “rear” are used in describing a linear list only when it
is implemented as a queue.
Queue is also called first-in-first-out (FIFO) lists. Since the first element in a
queue will be the first element out of the queue. In other words, the order in which
elements enters a queue is the order in which they leave.
There are main two ways to implement a queue :

1. Circular queue using array
2. Linked Structures (Pointers)

Primary queue operations:
Enqueue: insert an element at the rear of the queue
Dequeue: remove an element from the front of the queue

Following is the algorithm which describes the implementation of Queue using an
Array.
Insertion in Queue:

Deletion in Queue:

Algorithm: ENQUEUE(QUEUE, MAXSIZE, FRONT, REAR,COUNT, ITEM)
This algorithm inserts an element ITEM into a circular queue.

1. [QUEUE already filled?]
If COUNT = MAXSIZE then: [COUNT is number of values in the QUEUE]

Write: OVERFLOW, and Return.
2. [Find new value of REAR.]

If COUNT= 0, then: [Queue initially empty.]
Set FRONT= 0 and REAR = 0

Else: if REAR = MAXSIZE - 1, then:
Set REAR = 0

Else:
Set REAR = REAR+1.

[End of If Structure.]
3. Set QUEUE[REAR] = ITEM. [This insert new element.]
4. COUNT=COUNT+1 [Increment to Counter.]
5. Return.

Algorithm: DEQUEUE(QUEUE, MAXSIZE, FRONT, REAR,COUNT, ITEM)
This procedure deletes an element from a queue and assigns it to the
variable ITEM.

1. [QUEUE already empty?]
If COUNT= 0, then: Write: UNDERFLOW, and Return.

2. Set ITEM = QUEUE[FRONT].
3. Set COUNT = COUNT -1
4. [Find new value of FRONT.]

If COUNT = 0, then: [There was one element and has been deleted]
Set FRONT= -1, and REAR = -1.

Else if FRONT= MAXSIZE, then: [Circular, so set Front = 0]
Set FRONT = 0

Else:
Set FRONT:=FRONT+1.

[End of If structure.]

5. Return ITEM

D A T A S T R U C T U R E S (CSC-214)

45 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Following Figure shows that how a queue may be maintained by a circular array with
MAXSIZE = 6 (Six memory locations). Observe that queue always occupies
consecutive locations except when it occupies locations at the beginning and at the
end of the array. If the queue is viewed as a circular array, this means that it still
occupies consecutive locations. Also, as indicated by Fig(k), the queue will be empty
only when Count = 0 or (Front = Rear but not null) and an element is deleted. For
this reason, -1 (null) is assigned to Front and Rear.

MaxSize = 6

 (a) Initially QUEUE is Empty Front = -1
 Rear = -1
 Count = 0 0 1 2 3 4 5

(b) A, B, C are Enqueued / Inserted Front = 0
 Rear = 2

A B C

 Count = 3 0 1 2 3 4 5

(c) A is Deleted / Dequeue Front = 1
 Rear = 2

B C

 Count = 2 0 1 2 3 4 5

(d) D, E, F are Enqueued / Inserted Front = 1
 Rear = 5

B C D E F

 Count = 5 0 1 2 3 4 5

(e) B and C are Deleted / Dequeue Front = 3
 Rear = 5

D E F

 Count = 3 0 1 2 3 4 5

(f) G is Enqueued / Inserted Front = 3
 Rear = 0

G D E F

 Count = 4 0 1 2 3 4 5

(g) D and E are Deleted / Dequeue Front = 5
 Rear = 0

G F

 Count = 2 0 1 2 3 4 5

(h) H and I are Enqueued / Inserted Front = 5
 Rear = 2

G H I F

 Count = 4 0 1 2 3 4 5

D A T A S T R U C T U R E S (CSC-214)

46 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

(i) F is Deleted / Dequeue Front = 0
 Rear = 2

G H I

 Count = 3 0 1 2 3 4 5

(j) G and H are Deleted / Dequeue Front = 2
 Rear = 2

I

 Count = 1 0 1 2 3 4 5

(k) I is Deleted. Queue is Empty Front = -1
 Rear = -1
 Count = 0 0 1 2 3 4 5

D A T A S T R U C T U R E S (CSC-214)

47 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

This figure describes the way to
ENQUEUE / DEQUEUE values
into / from a Circular Queue

D A T A S T R U C T U R E S (CSC-214)

48 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Following is the graphical presentation of Queue using pointers

Before inserting a new element

After inserting element 15

Before removing the first element

After removing the first lement

D A T A S T R U C T U R E S (CSC-214)

49 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

// c-language code to implement Circular QUEUE using array
#include<iostream.h>
#include <process.h>
#define MAXSIZE 10 // int const MAXSIZE = 10;

// Global declarations and available to every
int Queue[MAXSIZE];
int front = -1;
int rear = -1;
int count =0;

bool IsEmpty(){if(count==0)return true; else return false; }

bool IsFull() { if(count== MAXSIZE) return true; else return false;}

void Enqueue(int ITEM)
{ if(IsFull()) { cout<< "\n QUEUE is full\n"; return;}

if(count == 0) rear = front= 0; // first item to enqueue
else
if(rear == MAXSIZE -1) rear=0 ; // Circular, rear set to zero
else rear++;

Queue[rear]=ITEM;
count++;

}

int Dequeue()
{

if(IsEmpty()) { cout<<"\n\nQUEUE is empty\n"; return -1; }

int ITEM= Queue[front];
count--;

 if(count == 0) front = rear = -1;
 else if(front == MAXSIZE -1) front=0;

else front++;

return ITEM;
}

void Traverse()
{ int i;

 if(IsEmpty()) cout<<"\n\nQUEUE is empty\n";
else

 { i = front;
 While(1)

 { cout<< Queue[i]<<"\t";
 if (i == rear) break;

else if(i == MAXSIZE -1) i = 0;
else i++;

}
}

 }

D A T A S T R U C T U R E S (CSC-214)

50 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

int main()
{

int choice,ITEM;
while(1)

{
cout<<"\n\n\n\n QUEUE operation\n\n";
cout<<"1-insert value \n 2-deleted value\n";
cout<<"3-Traverse QUEUE \n 4-exit\n\n";
cout<<"\t\t your choice:"; cin>>choice;

switch(choice)
{

case 1:
cout"\n put a value:";
cin>>ITEM);
Enqueue(ITEM);break;

case 2:
ITEM=Dequeue();
if(ITEM!=-1)cout<<t<< " deleted \n";
break;

case 3:
cout<<"\n queue state\n";
Traverse(); break;

case 4:exit(0);
}

}
return 0;

}

// A Program that exercise the operations on QUEUE
// using POINTER (Dynamic Binding)
// Programed by SHAHID LONE

#include <conio.h>
#include <iostream.h>

struct QUEUE
 { int val;
 QUEUE *pNext;
 };

QUEUE *rear=NULL, *front=NULL;

void Enqueue(int);
int Dequeue(void);
void Traverse(void);

void main(void)
{ int ITEM, choice;
 while(1)

 {
 cout<<" ******* QUEUE UNSING POINTERS ********* \n";

 cout<<" \n\n\t (1) Enqueue \n\t (2) Dequeue \n";
cout<<"\t (3) Print queue \n\t (4) Exit.";

 cout<<" \n\n\n\t Your choice ---> ";
 cin>>choice);

D A T A S T R U C T U R E S (CSC-214)

51 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 switch(choice)
 {
 case 1: cout<< "\n Enter a number: ";

 cin>>ITEM;
 Enqueue(ITEM);
 break;

 case 2: ITEM = Dequeue();
if(ITEM) cout<<” \n Deleted from Q = “<<ITEM<<endl;
break;

 case 3: Traverse();
 break;

 case 4: exit(0);
 break;

 default: cout<<"\n\n\t Invalid Choice: \n";
 } // end of switch block

 } // end of while loop

 } // end of of main() function

void Enqueue (int ITEM)
{ struct QUEUE *NewNode;

// in c++ NewNode = new QUEUE;
 NewNode = (struct QUEUE *) malloc(sizeof(struct QUEUE));

NewNode->val = ITEM;
NewNode->pNext = NULL;

 if (rear == NULL)
 front = rear= NewNode;

else
 {

rear->pNext = NewNode; rear = NewNode;
 }
}
int Dequeue(void)
{ if(front == NULL) {cout<<” \n <Underflow> QUEUE is empty\n";

return 0;
 }

 int ITEM = front->val;
 if(front == rear) front=rear=NULL;
 else front = front-> pNext;
 return(ITEM);
}
void Traverse(void)
{ if(front == NULL) {cout<< " \n <Underflow> QUEUE is empty\n";

 return; }
 QUEUE f = front;
 while(f!=rear)
 { cout front->val << ", ";
 f=f->pNext;
 }
}

D A T A S T R U C T U R E S (CSC-214)

52 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Linked List:
A linked list or one way list is a linear collection of data elements, called

nodes, where the linear order is given by means of “pointers”. Each node is
divided into two parts.

 The first part contains the information of the element.
 The second part called the link field contains the address of the next node in

the list.

To see this more clearly lets look at an example:

 The Head is a special pointer variable which contains the address of the first
node of the list. If there is no node available in the list then Head contains NULL
value that means, List is empty. The left part of the each node represents the
information part of the node, which may contain an entire record of data (e.g. ID,
name, marks, age etc). the right part represents pointer/link to the next node. The
next pointer of the last node is null pointer signal the end of the list.

Advantages:
List of data can be stored in arrays but linked structures (pointers) provide

several advantages.
A linked list is appropriate when the number of data elements to be represented in
data structure is unpredictable. It also appropriate when there are frequently
insertions & deletions occurred in the list. Linked lists are dynamic, so the length of
a list can increase or decrease as necessary.

Operations on Linked List:
There are several operations associated with linked list i.e.

a) Traversing a Linked List
Suppose we want to traverse LIST in order to process each node exactly once.

The traversing algorithm uses a pointer variable PTR which points to the node that is
currently being processed. Accordingly, PTR->NEXT points to the next node to be
processed so,

D A T A S T R U C T U R E S (CSC-214)

53 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

PTR=HEAD [Moves the pointer to the first node of the list]
PTR=PTR->NEXT [Moves the pointer to the next node in the list.]

PTR

b) Searching a Linked List:
Let list be a linked list in the memory and a specific ITEM of information is given

to search. If ITEM is actually a key value and we are searching through a LIST for
the record containing ITEM, then ITEM can appear only once in the LIST.

Search for wanted ITEM in List can be performed by traversing the list using a
pointer variable PTR and comparing ITEM with the contents PTR->INFO of each
node, one by one of list.

Algorithm: (Traversing a Linked List) Let LIST be a linked list in memory. This
algorithm traverses LIST, applying an operation PROCESS to each
element of list. The variable PTR point to the node currently being
processed.

1. Set PTR=HEAD. [Initializes pointer PTR.]
2. Repeat Steps 3 and 4 while PTR!=NULL.
3. Apply PROCESS to PTR-> INFO.
4. Set PTR= PTR-> NEXT [PTR now points to the next node.]

[End of Step 2 loop.]
5. Exit.

Algorithm: SEARCH(INFO, NEXT, HEAD, ITEM, PREV, CURR, SCAN)
LIST is a linked list in the memory. This algorithm finds the location
LOC of the node where ITEM first appear in LIST, otherwise sets
LOC=NULL.

1. Set PTR=HEAD.
2. Repeat Step 3 and 4 while PTR≠NULL:
3. if ITEM = PTR->INFO then:

Set LOC=PTR, and return. [Search is successful.]
[End of If structure.]

4. Set PTR=PTR->NEXT
[End of Step 2 loop.]

5. Set LOC=NULL, and return. [Search is unsuccessful.]
6. Exit.

D A T A S T R U C T U R E S (CSC-214)

54 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Search Linked List for insertion and deletion of Nodes:
Both insertion and deletion operations need searching the linked list.

 To add a new node, we must identify the logical predecessor (address of
previous node) where the new node is to be inserting.

 To delete a node, we must identify the location (addresses) of the node to be
deleted and its logical predecessor (previous node).

Basic Search Concept
Assume there is a sorted linked list and we wish that after each insertion/deletion
this list should always be sorted. Given a target value, the search attempts to locate
the requested node in the linked list.
Since nodes in a linked list have no names, we use two pointers, pre (for previous)
and cur (for current) nodes. At the beginning of the search, the pre pointer is null
and the cur pointer points to the first node (Head). The search algorithm moves the
two pointers together towards the end of the list. Following Figure shows the
movement of these two pointers through the list in an extreme case scenario: when
the target value is larger than any value in the list.

Moving of pre and cur pointers in searching a linked list

D A T A S T R U C T U R E S (CSC-214)

55 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Values of pre and cur pointers in different cases

D A T A S T R U C T U R E S (CSC-214)

56 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Insertion into a Linked List:
If a node N is to be inserted into the list between nodes A and B in a linked list

named LIST.
Its schematic diagram would be;

Inserting at the Beginning of a List:
If the linked list is sorted list and new node has the least low value already

stored in the list i.e. (if New->info < Head->info) then new node is inserted at
the beginning / Top of the list.

Node A Node B
X

N

Head

D A T A S T R U C T U R E S (CSC-214)

57 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Inserting a new node in list:
The following algorithm inserts an ITEM into LIST.

Delete a node from list:
The following algorithm deletes a node from any position in the LIST.

Algorithm: INSERT(ITEM)
[This algorithm add newnodes at any position (Top, in Middle and at
End) in the List]

1. Create a NewNode node in memory
2. Set NewNode -> INFO =ITEM. [Copies new data into INFO of new node.]
3. Set NewNode -> NEXT = NULL. [Copies NULL in NEXT of new node.]
4. If HEAD=NULL, then HEAD=NewNode and return. [Add first node in list]
5. if NewNode-> INFO < HEAD->INFO

then Set NewNode->NEXT=HEAD and HEAD=NewNode and return
[Add node on top of existing list]

6. PrevNode = NULL, CurrNode=NULL;
7. for(CurrNode =HEAD; CurrNode != NULL; CurrNode = CurrNode ->NEXT)

{ if(NewNode->INFO <= CurrNode ->INFO)
{

break the loop
}

 PrevNode = CurrNode;
} [end of loop]

 [Insert after PREV node (in middle or at end) of the list]
8. Set NewNode->NEXT = PrevNode->NEXT and
9. Set PrevNode->NEXT= NewNode.

10.Exit.

Algorithm: DELETE(ITEM)
LIST is a linked list in the memory. This algorithm deletes the node
where ITEM first appear in LIST, otherwise it writes “NOT FOUND”

1. if Head =NULL then write: “Empty List” and return [Check for Empty List]
2. if ITEM = Head -> info then: [Top node is to delete]

 Set Head = Head -> next and return

3. Set PrevNode = NULL, CurrNode=NULL.
4. for(CurrNode =HEAD; CurrNode != NULL; CurrNode = CurrNode ->NEXT)

 { if (ITEM = CurrNode ->INFO) then:
{

break the loop
}

Set PrevNode = CurrNode;
} [end of loop]

5. if(CurrNode = NULL) then write : Item not found in the list and return
6. [delete the current node from the list]

 Set PrevNode ->NEXT = CurrNode->NEXT
7. Exit.

D A T A S T R U C T U R E S (CSC-214)

58 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

// A Program that exercise the operations on Liked List
// Programed by SHAHID LONE
#include<iostream.h>
#include <malloc.h>
#include <process.h>

struct node
{

int info;
struct node *next;

};
struct node *Head=NULL;

struct node *Prev,*Curr;

void AddNode(int ITEM)
{

struct node *NewNode;
NewNode = new node;
// NewNode=(struct node*)malloc(sizeof(struct node));
NewNode->info=ITEM; NewNode->next=NULL;

 if(Head==NULL) { Head=NewNode; return; }
 if(NewNode->info < Head->info)

{ NewNode->next = Head; Head=NewNode; return;}

 Prev=Curr=NULL;
 for(Curr = Head ; Curr != NULL ; Curr = Curr ->next)

{
if(NewNode->info < Curr ->info) break;
else Prev = Curr;

}
 NewNode->next = Prev->next;
 Prev->next = NewNode;
} // end of AddNode function

void DeleteNode()
{ int inf;

if(Head==NULL){ cout<< "\n\n empty linked list\n"; return;}
cout<< "\n Put the info to delete: ";
cin>>inf;

if(inf == Head->info) // First / top node to delete
{ Head = Head->next; return;}

Prev = Curr = NULL;
for(Curr = Head ; Curr != NULL ; Curr = Curr ->next)

{
if(Curr ->info == inf) break;

 Prev = Curr;
}
if(Curr == NULL)

cout<<inf<< " not found in list \n";
 else

{ Prev->next = Curr->next; }

}// end of DeleteNode function

D A T A S T R U C T U R E S (CSC-214)

59 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

void Traverse()
{

for(Curr = Head; Curr != NULL ; Curr = Curr ->next)

cout<< Curr ->info<<”\t”;
} // end of Traverse function

int main()
{ int inf, ch;
 while(1)
 { cout<< " \n\n\n\n Linked List Operations\n\n";

cout<< " 1- Add Node \n 2- Delete Node \n”;
cout<< " 3- Traverse List \n 4- exit\n";
cout<< "\n\n Your Choice: "; cin>>ch;

switch(ch)
{ case 1: cout<< "\n Put info/value to Add: ";

cin>>inf);
 AddNode(inf);

break;
 case 2: DeleteNode(); break;
 case 3: cout<< "\n Linked List Values:\n";

Traverse(); break;
 case 4: exit(0);
} // end of switch

 } // end of while loop
return 0;

} // end of main () function

D A T A S T R U C T U R E S (CSC-214)

60 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

// Program designed by SHAHID IQBAL LONE Qassim University K.S.A
// This program describes the basics about Read/Write structures into
// a file. The file which is going to be used is a binary file.
// The logic is already discussed in the Class. Students should try to
// run this program and discuss with me if they have some queries

#include<iostream.h>
#include<fstream.h>
#include<stdlib.h> // for exit keyword
#include<iomanip.h>
#include<conio.h>

// ********** GLOBAL STRUCTURE TEMPLATE *****************/
 struct student
 { int id;

 char name[20];
 int m1;
 int m2;
 int m3;

 };
//*************** GLOBAL VARIABLES ***************/

 const int MAX=50; // size available in the array
 int n= -1; // used as index for insertion of new records in array
 student Data[MAX]; // Array to hold all the records
 int page_no; // used for page numbers with headings in Report

/********************* FUNCTIONS PROTOTYPES ********************/

void LoadList();
void AddStudent(void);
void SaveList(void);
void DisplayList(void);
void Heading(void);

/*************************MAIN FUNCTION****************************/

void main(void)
{

short int Choice=0;
LoadList();
while(1)
{ system ("cls"); // this statement clears the screen

cout<<" Main Menu"<<endl;
cout<<" ~~~~~~~~~"<<endl;
cout<<"\n\t[1] Add a New Students's Record";

cout<<"\n\n\t[2] Display Students List";
cout<<"\n\n\t[3] Store Students List into File";
cout<<"\n\n\t[4] Exit Program";
cout<<"\n\n\n\t\tEnter your choice --> ";
cin>>Choice;

switch(Choice)
{
case 1:

D A T A S T R U C T U R E S (CSC-214)

61 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

AddStudent();
break;

case 2: page_no=0;
 DisplayList();
 break;

case 3: SaveList();
break;

case 4:
SaveList();
cout<<"\n\n\n GoodBye!!!\n";
exit(0);

default:
cout<<"\nInvalid Choice...";

}

}

} // end of main() function

/****************** FUNCTION DEFINITIONS ********************/

void AddStudent(void)
{

 if(n==MAX-1)
{ cout<< "\n\n [OverFlow !!]";
 cout<< "\n [can not store new record]\n\n\\n";
 return;
}

 n++;
 cout<<"\n\n\n\n\n\t\t DATA FOR "<<n+1<<" STUDENT\n\n";
 cout<< " PUT ID: "; cin>> Data[n].id;

cout<< " PUT NAME: "; cin.ignore(); // clears input buffer
cin.getline(Data[n].name, 20);

 cout<< " put marks of three subjects separated by space: ";
 cin>>Data[n].m1>>Data[n].m2>>Data[n].m3;

} // End of function

void SaveList(void)
{ ofstream pFile;
 pFile.open("student.dat",ios::binary);

if(pFile==NULL)
{
cout<<"Cannot Open File \n Data not saved into file\n\n";

exit(0);
}

for (int j=0; j<=n ; j++)
pFile.write((char*) &Data[j],sizeof(Data[j]));

 pFile.close();
}

D A T A S T R U C T U R E S (CSC-214)

62 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

void LoadList()
{ ifstream piFile;

piFile.open("student.dat",ios::binary);
if(piFile==NULL) {cout<< "New file will be created\n"; return;}

 n++;
// Read First Record from file
piFile.read((char*) &Data[n],sizeof(Data[n]));

while(piFile) // if(pFile.eof())break;
{ n++;

 piFile.read((char*) &Data[n],sizeof(Data[n]));

}
n--;
piFile.close();

}

void DisplayList(void)
 {

if(n == -1)
{ cout<< "\n\nUnderFlow !! [Empty Array] ";
 cout<< "\n Nothing to Display \n\n";
 return;
}

 int i=0,tot;
 double per;
 char grade;
 Heading();

 while (i<=n)
 { if(i % 20 == 0 && i != 0)

{ cout<< "\n\n Press a key for next Page: ";
Heading()

}
tot=Data[i].m1 + Data[i].m2 + Data[i].m3;

 per = tot * 100.0 / 300.0;
 if(per >= 80.0) grade='A';
 else if(per>= 70.0) grade='B';

else if(per>= 60.0) grade= 'C';
 else if(per>= 50.0) grade= 'D';
 else grade='F';

 // print record
cout<<setw(5)<<Data[i].id<<setw(3)<<" "<<setw(20)
<<setiosflags(ios::left)<<Data[i].name<<setw(6)
<<resetiosflags(ios::left)<<Data[i].m1<<setw(9)<<Data[i].m2
<<setw(9)<<Data[i].m3<<setw(8)<<tot<<setw(10)
<<setiosflags(ios::fixed)<<setiosflags(ios::showpoint)
<<setprecision(2)<<per<<setw(5)<<grade<<endl;

i++;
} // end of while loop

 system("pause"); // it makes halt and need to press any key
}

D A T A S T R U C T U R E S (CSC-214)

63 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

void Heading()
{
 system ("cls"); // this statement clears the screen
 page_no++;

// Print heading
 cout<<"\t\t\t\tStudents Records List \t\t Page-No: "<<
page_no<<endl;

 cout<<"\t\t\t\t~~~~~~~~~~~~~~~~~~~~~\n\n";
 cout<<setw(8)<<" ID. "<<setw(20)<<" N A M E ";
 cout<<setw(9)<<" Marks-1 "<<setw(9)<<" Marks-2 " <<setw(9)
 <<" Marks-3 "<<setw(7)<<" Total "<<setw(9)<<" Per% "<<setw(6)

<<" Grade";
 cout<<endl<<endl;;

}

Home Work:

Students have to change the above program to store/write the nodes of a
linked list into a file and reverse read nodes from file to create a
linked list in memory.

D A T A S T R U C T U R E S (CSC-214)

64 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Tree:
So far, we have been studying mainly linear types of data structures: arrays,

lists, stacks and queues. Now we defines a nonlinear data structure called Tree.
This structure is mainly used to represent data containing a hierarchical relationship
between nodes/elements e.g. family trees and tables of contents.
There are two main types of tree:

 General Tree
 Binary Tree

General Tree:
 A tree where a node can has any number of children / descendants is called
General Tree. For example:

This following figure is a general tree where root is “Visual Programming”.

D A T A S T R U C T U R E S (CSC-214)

65 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Following figure is also an example of general tree where root is “Desktop”.

Binary Tree:
A tree in which each element may has 0-child , 1-child or maximum of 2-children.

A Binary Tree T is defined as finite set of elements, called nodes, such that:

a) T is empty (called the null tree or empty tree.)
b) T contains a distinguished node R, called the root of T, and the remaining

nodes of T form an ordered pair of disjoint binary trees T1 and T2.

If T does contain a root R, then the two trees T1 and T2 are called, respectively, the
left sub tree and right sub tree of R.

D A T A S T R U C T U R E S (CSC-214)

66 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

If T1 is non empty, then its node is called the left successor of R; similarly, if T2 is
non empty, then its node is called the right successor of R. The nodes with no
successors are called the terminal nodes. If N is a node in T with left successor S1

and right successor S2, then N is called the parent(or father) of S1 and S2.
Analogously, S1 is called the left child (or son) of N, and S2 is called the right child
(or son) of N. Furthermore, S1 and S2 are said to siblings (or brothers). Every
node in the binary tree T, except the root, has a unique parent, called the
predecessor of N. The line drawn from a node N of T to a successor is called an
edge, and a sequence of consecutive edges is called a path. A terminal node is
called a leaves, and a path ending in a leaves is called a branch.

The depth (or height) of a tree T is the maximum number of nodes in a
branch of T. This turns out to be 1 more than the largest level number of T.
Level of node & its generation:

Each node in binary tree T is assigned a level number, as follows. The root R
of the tree T is assigned the level number 0, and every other node is assigned a level
number which is 1 more than the level number of its parent. Furthermore, those
nodes with the same level number are said to belong to the same generation.

D A T A S T R U C T U R E S (CSC-214)

67 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Complete Binary Tree:
Consider a binary tree T. each node of T can have at most two children.

Accordingly, one can show that level n-2 of T can have at most two nodes.

A tree is said to be complete if all its levels, except possibly the last have the
maximum number of possible nodes, and if all the nodes at the last level appear as
far left as possible.

Extended Binary Tree: 2-Tree:
A binary tree T is said to be a 2-tree or an extended binary tree if each node

N has either 0 or 2 children.
In such a case, the nodes, with 2 children are called internal nodes, and the

node with 0 children are called external node.

A

B E

F G L M

N O P

A

B

A

B

Binary Tree Extended 2-tree

D A T A S T R U C T U R E S (CSC-214)

68 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Traversing of Binary Tree:

A traversal of a tree T is a systematic way of accessing or visiting all the node of T.
There are three standard ways of traversing a binary tree T with root R. these are :

 Preorder (N L R):
a) Process the node/root. (A B D F I C G H J L K)
b) Traverse the Left sub tree.
c) Traverse the Right sub tree.

 Inorder (L N R): (D B I F A G C L J H K)
a) Traverse the Left sub tree.
b) Process the node/root.
c) Traverse the Right sub tree.

 Postorder (L R N): (D I F B G L J K H C A)
a) Traverse the Left sub tree.
b) Traverse the Right sub tree.
c) Process the node/root.

 Descending order (R N L): (K H J L C G A F I B D)
(Used in Binary Search Tree, will be discussed later)

a) Traverse the Right sub tree.
b) Process the node/root.
c) Traverse the Left sub tree.

D A T A S T R U C T U R E S (CSC-214)

69 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Preorder Traversal:

Inorder Traversal:

Postorder Traversal:

Algorithm: PREORDER (pRoot)
First time this function is called by passing original root into pRoot.
Here pRoot is pointers pointing to current root. This algorithm does a
preorder traversal of T, applying by rcurrsively calling same function
and updating proot to traverse in a way i.e. (NLR) Node, Left, Right.

1. If (pRoot NOT = NULL) then: [does child exist ?]
i- Apply PROCESS to pRoot-> info. e.g. Write: pRoot -> info

 [recursive call by passing address of left child to update pRoot]
ii- PREORDER (pRoot -> Left)

 [recursive call by passing address of right child to update pRoot]
iii- PREORDER(pRoot -> Right)

[End of If structure.]

2. Exit.

Algorithm: INORDER (pRoot)
First time this function is called by passing original root into pRoot.
Here pRoot is pointers pointing to current root. This algorithm does a
Inorder traversal of T, applying by rcurrsively calling same function
and updating proot to traverse in a way i.e. (LNR) Left, Node, Right.

1. If (pRoot NOT = NULL) then: [does child exist ?]
 [recursive call by passing address of left child to update pRoot]

i- PREORDER (pRoot -> Left)
ii- Apply PROCESS to pRoot-> info. e.g. Write: pRoot -> info

 [recursive call by passing address of right child to update pRoot]
iii- PREORDER(pRoot -> Right)

[End of If structure.]

2. Exit.

Algorithm: POSTORDER (pRoot)
First time this function is called by passing original root into pRoot.
Here pRoot is pointers pointing to current root. This algorithm does a
Postorder traversal of T, applying by rcurrsively calling same function
and updating proot to traverse in a way i.e. (LRN) Left, Right, Node.

1. If (pRoot NOT = NULL) then: [does child exist ?]
 [recursive call by passing address of left child to update pRoot]

i- PREORDER (pRoot -> Left)
 [recursive call by passing address of right child to update pRoot]

ii- PREORDER(pRoot -> Right)
iii- Apply PROCESS to pRoot-> info. e.g. Write: pRoot -> info

[End of If structure.]

2. Exit.

D A T A S T R U C T U R E S (CSC-214)

70 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Preparing a Tree from an infix arithmetic expression

Recursion:
For implementing tree traversal logics as stated, two approaches are used, i.e. use
stacks or recursive functions. In this lecture notes, we will see only recursion
approach to implement these algorithms. Students will also use stacks to implement
these algorithms as homework.

Recursion is an important concept in computer science. Many algorithms can be best
described in terms of recursion. A recursive function / procedure containing a Call
statement to itself. To make a function recursive one must consider the following
properties:

(1) There must be certain (using arguments), called base criteria, for which the
procedure / function does not call itself.

(2) Each time the procedure / function does call itself, control must be closer to
the base criteria.

D A T A S T R U C T U R E S (CSC-214)

71 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Following examples helps to clarify of these ideas:
/* The following program demonstrates function call of itself. The following function does
not follows the first property i.e. (recursion must has some criteria). Endless execution */

#include <stdio.h>

void disp(); // prototyping

int main()

{

printf(“\nHello”);
disp(); /* A function, call */

return 0;

}

void disp()

 { printf(“Hello\t”);
 disp(); /* A function call to itself without any criteria */

 }

Don’t run above program, it is still an explanation thus program is not valid logically.

The second property of recursion i.e. (after each cycle/iteration control must reach closer
to the base criteria) and it is ignored here, so the following program is logically invalid.

#include <stdio.h>

void numbers(int);

int main()

{ int i=10;

numbers(n);

return 0;

}

void numbers(int n)

{ printf(“Hello\t”);
 if(n >= 1) numbers(n+1); // this needs explanation

 // after each iteration, control is going far from base criteria

}

Factorial Function:
The product of the positive integers from n to 1, inclusive, is called “n_factorial” and
is usually denoted by n!.
It is also convenient to define 0! = 1, so that the function is defined for all
nonnegative integers. Thus we have:

0! = 1 1! = 1 2! -> 2*1 = 2 3! -> 3*2*1 = 6

4! -> 4*3*2*1 = 24 5! -> 5*4*3*2*1 = 120 6! -> 6*5*4*3*2*1 = 720

D A T A S T R U C T U R E S (CSC-214)

72 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Program to find the factorial of the given
number using for loop:

#include <stdio.h>

int factorial(int);

void main

{ int a, fact;

printf("\nEnter any number: ");

 scanf("%d", &a);

fact = factorial(a);

printf("\nFactorial is = %d", fact);

}

int factorial(int n)

{ int f = 1, i;

for(i = n; i>=1; i--)

f = f * i;

return f;

}

To find the factorial of a given number using
recursion

#include <stdio.h>

int factorial(int);

int main()

{ int a, fact;

printf("\nEnter any number: ");

 scanf("%d", &a);

fact = factorial(a);

 printf("\nFactorial is = %d", fact);

return 0;

}

int factorial(int n)

{ int f;

if(n == 0 || n == 1) return 1;

f = n * factorial(n-1);

return f;

}

D A T A S T R U C T U R E S (CSC-214)

73 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Binary Search Tree:
Suppose T is a binary tree, the T is called a binary search tree or binary

sorted tree if each node N of T has the following property:
The values of at N (node) is greater than every value in the left sub tree of

N and is less than every value in the right sub tree of N.
Binary Search Tree using these values: (50, 30, 55, 25, 10, 35, 31, 20, 53, 60, 62)

Following figure shows a binary search tree. Notice that this tree is obtained by inserting
the values 13, 3, 4, 12, 14, 10, 5, 1, 8, 2, 7, 9, 11, 6, 18 in that order, starting from an
empty tree.

50

30

25

10

20
31 37

35

55

53 60

62

D A T A S T R U C T U R E S (CSC-214)

74 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 Sorting: Note that inorder traversal of a binary search tree always gives a sorted
sequence of the values. This is a direct consequence of the BST property. This
provides a way of sorting a given sequence of keys: first, create a BST with these
keys and then do an inorder traversal of the BST so created.

 Inorder Travers (LNR) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18

 Search: is straightforward in a BST. Start with the root and keep moving left or
right using the BST property. If the key we are seeking is present, this search
procedure will lead us to the key. If the key is not present, we end up in a null
link.

 Insertion in a BST is also a straightforward operation. If we need to insert an
element n, we traverse tree starting from root by considering the above stated
rules. Our traverse procedure ends in a null link. It is at this position of this null
link that n will be included. .

 Deletion in BST: Let x be a value to be deleted from the BST and let N denote
the node containing the value x. Deletion of an element in a BST again uses the
BST property in a critical way. When we delete the node N containing x, it would
create a "gap" that should be filled by a suitable existing node of the BST. There
are two possible candidate nodes that can fill this gap, in a way that the BST
property is not violated: (1). Node containing highest valued element among all
descendants of left child of N. (2). Node containing the lowest valued element
among all the descendants of the right child of N. There are three possible cases
to consider:
Deleting a leaf (node with no children): Deleting a leaf is easy, as we can
simply remove it from the tree.
Deleting a node with one child: Delete it and replace it with its child.
Deleting a node with two children: Call the node to be deleted "N". Do not
delete N. Instead, choose its in-order successor node "S". Replace the value of
“N” with the value of “S”. (Note: S itself has up to one child.)
As with all binary trees, a node's in-order successor is the left-most child of its
right subtree. This node will have zero or one child. Delete it according to one of
the two simpler cases above.

Figure on next page illustrates several scenarios for deletion in BSTs.

D A T A S T R U C T U R E S (CSC-214)

75 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

D A T A S T R U C T U R E S (CSC-214)

76 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

/* This program is about to implement different operations on Binary
Search Tree. Programmed by SHAHID LONE */

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

struct NODE
{

int info;
struct NODE *Left;
struct NODE *Right;

};

 struct NODE *Root = NULL; // initially Root is NULL

void AttachNode(struct NODE *pRoot, struct NODE *pNew)
{

if(Root == NULL) // to attach first node with tree
{

Root = pNew; // attaches node on first root
}
else
{

if (pNew->info < pRoot->info)

{ // traverse to left sub-tree and find null at left
if(pRoot->Left != NULL)
 AttachNode(pRoot->Left, pNew); // recursive call
else
 pRoot->Left = pNew; // attaches node on left

}
else
{ // traverse to right sub-tree and find null at right

if(pRoot->Right != NULL)
 AttachNode(pRoot->Right, pNew); // recursive call

else
 pRoot->Right = pNew; // attaches node on left

}
}

}

void Insert(int x)
{

struct NODE *NewNode= (struct NODE *) malloc(sizeof(NODE));
NewNode->Left = NULL;
NewNode->Right= NULL;
NewNode->info = x;
AttachNode(Root, NewNode);

}

D A T A S T R U C T U R E S (CSC-214)

77 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

void Pre_Order(struct NODE *pRoot)
{

if (pRoot)
{

printf("%d\t",pRoot->info);
Pre_Order(pRoot->Left);
Pre_Order(pRoot->Right);

}
}

void Post_Order(struct NODE *pRoot)
{

if (pRoot)
{

Post_Order(pRoot->Left);
Post_Order(pRoot->Right);
printf("%d\t",pRoot->info);

}
}

void In_Order(struct NODE *pRoot)
{

if(pRoot)
{

if(pRoot->Left) In_Order(pRoot->Left);

printf("%d\t",pRoot->info);

if(pRoot->Right) In_Order(pRoot->Right);

}
}

void DisplayDescending(struct NODE *pRoot)
{

if(pRoot)
{

if(pRoot->Right) DisplayDescending(pRoot->Right);

printf("%d\t",pRoot->info);

if(pRoot->Left) DisplayDescending(pRoot->Left);

}
}

D A T A S T R U C T U R E S (CSC-214)

78 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

void DeleteTree(struct NODE *pRoot) // This function deletes all nodes in the tree
{

if(pRoot)
{

if(pRoot->Right)
{

DeleteTree(pRoot->Right);
}

if(pRoot->Left)
{

DeleteTree(pRoot->Left);
}

free(pRoot);

}
}

int main(void)
{

int ch, item;
while(1)
{ printf("\n\n\n Binary Search Tree Functions\n\n");

printf("\n1. Insert a New Node");
printf("\n2. Remove Existing Node");
printf("\n3. In-Order Traverse (Ascending Order)");
printf("\n4. Pre-Order Traverse ");
printf("\n5. Post-Order Traverse ");
printf("\n6. Display in Descending Order (Reverse)");
printf("\n7. Exit");
printf("\nEnter you choice: ");
scanf("%d",&ch);

switch(ch)
{
case 1:

printf("\n\n put a number: "); scanf("%d",&item);
Insert(item);
break;

case 2:
// Remove(); // This function is not defined.

break; // Students shall write this function as home work.

case 3:
printf("\n\n\n In-Order Traverse (ASCENDING ORDER)\n");
In_Order(Root);
printf("\n\n");
break;

case 4:

D A T A S T R U C T U R E S (CSC-214)

79 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

printf("\n\n\n Pre-Order Traverse \n");
Pre_Order(Root);
printf("\n\n");
break;

case 5:
printf("\n\n\n Post-Order Traverse \n");
Post_Order(Root);
printf("\n\n");
break;

case 6:
printf("\n\n\nDESCENDING ORDER (Reverse)\n");
DisplayDescending(Root);
printf("\n\n");
break;

case 7:
 DeleteTree(Root);
exit(0);

default:
printf("\n\nInvalid Input");

} // end of switch
} // end of while loop

} // end of main() function

D A T A S T R U C T U R E S (CSC-214)

80 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Sorting:
Sorting and searching are fundamental operations in computer science.

Sorting refers to the operation of arranging data in some given order. Such as
increasing or decreasing, with numeric data or alphabetically, with string data.
Insertion Sort:

Suppose an array A with N elements A[0], A[1], A[N-1] is in memory.
The insertion sort algorithm scan A from A[0] to A[N-1], inserting each element
A[K] into its proper position in the previously sorting sub array A[0], A[1],A[K-
1]. That is:

Pass 1: A[1] is inserted either before of after A[0] so that: A[0], A[1] is sorted.
Pass 2: A[2] is inserted into its proper place in A[0], A[1], so that A[0], A[1], A[2]

are sorted.
Pass 3: A[3] is inserted into its proper place in A[0], A[1], A[2] so that: A[0], A[1],

 A[2], A[3] are sorted.
. .
Pass N-1: A[N-1] is inserted into its proper place in A[0], A[1], A[N-1] so
that: A[0], A[1], A[N-1] are sorted.
This sorting algorithm is frequently used when N is small. There remains only the
problem of deciding how to insert A[K] in its proper place in the subarray A[0], A[1],
. . . . A[K-1]. This can be accomplished by comparing A[K] with A[K-1], comparing
A[K] with A[K-2], comparing A[K] with A[K-3], and so on, until first meeting an
element A[i] (where i start from k-1) such that A[i] ≤ A[K]. then each of elements
A[K-1], A[K-2], A[i+1] is moved forward one location, and A[K] is then
inserted in the i+1 st position in the array.

Pass
A[0]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

80 77 33 44 11 88 22 66 55

K=1
77

80 33 44 11 88 22 66 55

K=2 33
77

80 44 11 88 22 66 55

K=3
33

44 77 80 11 88 22 66 55

K=4 11 33 44 77 80
88

22 66 55

K=5 11
33

44 77 80 88 22 66 55

K=6 11 22 33 44
77

80 88 66 55

K=7 11 22 33 44
66

77 80 88 55

K=8 11 22 33 44 55 66 77 80 88

Sorted 11 22 33 44 55 66 77 80 88

D A T A S T R U C T U R E S (CSC-214)

81 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

The algorithm is simplified if there always is an element A[i] such that A[i] ≤ A[K];
other wise we must constantly check to see if we are comparing A[K] with A[0].

// Programe of Implementation of Insertion SORT
// Programmd by SHAHID LONE
// Insertion Sort

#include<iostream.h>
#include<conio.h>

const int SIZE = 100;
void InsertionSort(int x[],int);

void main(void)
{ int i,n;

int A[SIZE];
cout<"\nData Collection for Insertion Sort\n";
cout<< "\nHow many value are to process: ";
cin>> n;
cout<<"\nINPUT "<<n<<" values:\n";
for(i=0; i< n ; i++) cin>>A[i];
InsertionSort(A,n);
cout<< "\nSORTED ARRAY\n";
for(i=0; i < n; i++) A[i]<<'\t';

}

void InsertionSort(int x[100], int n)
{ int i, k, temp;

for(k=1; k< n; k++)
{ temp = x[k];

for(i=k-1; i>=0 && temp<x[i]; i--) x[i+1] = x[i];
x[i+1] = temp;

}
}

Algorithm: (INSERTION SORT) INSERTION (A, N)
 [Where A is an array and N is the Size of values in the array]

1. Repeat steps 2 to 4 for K=1,2,3, N-1:
2. Set TEMP = A[K] and i =K-1.
3. Repeat while i >= 0 and TEMP < A[i]

a) Set A[i+1] = A[i]. [Moves element forward.]
b) Set i = i -1.

[End of loop.]
4. Set A[i+1] =TEMP. [Insert element in proper place.]

[End of Step 2 loop.]
5 Return.

D A T A S T R U C T U R E S (CSC-214)

82 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Selection Sort:
Suppose an array A with N elements A[0], A[1], . . . A[N-1] Is in memory. The
Selection sort algorithm for sorting A works as follows. First find the smallest
element in the list and put it in the first position. Then find the second smallest
element in the list and put it the second position. And so on.

Pass 1: Find the location LOC of the smallest in the list of N elements A[0], A[1], .
 A[N-1], and then interchange A[LOC] and A[0]. Then:
 A[0] is sorted.

Pass 2: Find the location LOC of the smallest in the sublist of N-1 elements A[1],
 A[2], . . . A[N-1], and interchange A[LOC] and A[1]. Then:
 A[0], A[1] is sorted. Since A[0] ≤ A[1].

. .

. .
Pass N-1: Find the location LOC of the smallest A[N-2] and A[N-1], and then

 interchanged A[LOC] and A[N-1]. Then:
 A[0], A[1], A[2], A[N-1] is sorted.

Algorithm: MIN(A, K, N, LOC)
[An Array A is in memory. This procedure finds the location Loc of the
smallest element among A[K], A[K+1],A[N-1].]

1. Set MIN = A[K] and LOC = K. [Initializes pointers.]
2. Repeat for J=K+1, K+2, N:

If MIN > A[J], then: MIN = A[J] and LOC = J.
3. Return LOC.

Algorithm: (SELECTION SORT) SELECTION (A, N)
1. Repeat steps 2 and 3 for K=0,1,2, N-2:
2. Call MIN(A, K, N, LOC).
3. [Interchange A[K] and A[LOC].]

Set TEMP = A[K], A[K] = A[LOC] and A[LOC] = TEMP.
[End of step 1 loop.]

4. Exit.

D A T A S T R U C T U R E S (CSC-214)

83 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

//

Programe of Implementation of Selection SORT
// Programmed by SHAHID LONE
#include<iostream.h>
#include<conio.h>
#define ARRAY_SIZE 100
void SelectionSort(int [], int);
int MIN(int [], int);

void main(void)
{ int i,n ;

int A[ARRAY_SIZE];
cout<< "\n Selection Sort\n";
cout<< "How many values are to process: "; cin>>n;
cout<< "\PUT "<<n<< " Random values\n";
for(i=0; i< n; i++) cin>> nvdata[i]);
SelectionSort(A, n);
cout<<"\nSORTED ARRAY\n";
for(i=0; i< n; i++) cout<< A[i]<<"\t";

}
void SelectionSort(int A[ARRAY_SIZE], int n)
{ int K, loc, temp;

for(K = 0 ; K < N-1 ; K++)
{ loc = MIN (A, K);

temp = A[K]; A[K] = A[loc]; A[loc] = temp;}
}
int MIN(int A[ARRAY_ZIZE], int K)
 { int min, j, loc;
 min = A[K]; loc = K;
 for(j = K+1; j <= K-1 ; j++)
 if(min > A[j]){min = A[j]; loc = j;}
 return loc;
 }

Pass A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

K=0, LOC=3 77 33 44 11 88 22 66 55

K=1, LOC=5 11 33 44 77 88 22 66 55

K=2, LOC=5 11 22 44 77 88 33 66 55

K=3, LOC=5 11 22 33 77 88 44 66 55

K=4, LOC=7 11 22 33 44 88 77 66 55

K=5, LOC=6 11 22 33 44 55 77 66 88

K=6, LOC=6 11 22 33 44 55 66 77 88

Sorted 11 22 33 44 55 66 77 88

D A T A S T R U C T U R E S (CSC-214)

84 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Merging:
Suppose A is sorted list with r elements and B is a sorted list with s elements.

The operation that combine the elements of A and B into a single sorted list C with
n= r+s elements is called merging. One simple way to merge is to place the
elements of C after the elements of A and then use some sorting algorithm on the
entire lsit. This method does not take advantage of the fact that A and B are
individually sorted. A much more efficient algorithm is merge sort algorithm.
Suppose one is given two sorted decks of cards. The decks are merged as:

(a) (b)

(c) (d)

(e)
Merge Sort:

The merge sort splits the list to be
sorted into two equal halves, and places
them in separate arrays. Each array is
recursively sorted, and then merged back
together to form the final sorted list.

88

44

22

55

33

88

44

55

33

22

33

22

88

44

55

44

33

22

88 55

55

44

33

22
88

55

44

33

22

D A T A S T R U C T U R E S (CSC-214)

85 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

Consider an array then split into two list, then:

Pass 1:

Pass 2:

Pass 3:

Pass 4:

5 4 2 3

5 4 2 3

4 5 2 3

2 3 4 5

Algorithm: MERGESORT (A, N)
1. If N=1, Return.
2. Set N1:=N/2, N2:=N-N1.
3. Repeat for i=0,1,2 (N1-1)

Set L [i]=A [i].
4. Repeat for j=0,1,2 (N2-1)

Set R [j]=A [N1+j].
5. Call MERGESORT (L, N1).
6. Call MERGESORT (R, N2).
7. Call MERGE (A, L, N1, R,N2).
8. Return.

Algorithm: MERGE (A, L, N1, R, N2)
1. Set i:=0, j:=0.
2. Repeat for k=0,1,2 (N1+N2-1)

If i<N1, then:
If j=N2 or L [i] ≤ R [j], then:

Set A [k] =L [i].
Set i=i+1;

Else:
If j < N2, then:

Set A [k]=R [j].
Set j=j+1.

3. Return.

D A T A S T R U C T U R E S (CSC-214)

86 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

C++ Code (MERGE SORT):

#include <iostream.h>
#include <conio.h>
int a[50];
class merge_sort

{public:
void merge(int,int,int);
void sort(int ,int);

};
void merge_sort::sort(int low,int high)
 {

int mid;
if(low<high)

{mid=(low+high)/2;
 sort(low,mid);
 sort(mid+1,high);
 merge(low,mid,high);
 }

 }
void merge_sort::merge(int low,int mid,int high)

 {int h,i,j,b[50],k;
 h=low;
 i=low;
 j=mid+1;
 while((h<=mid)&&(j<=high))

{if(a[h]<=a[j])
{b[i]=a[h];
 h++;
}

 else
 {b[i]=a[j];
 j++;
 }

 i++;
 }

 if(h>mid)
{for(k=j;k<=high;k++)

{b[i]=a[k];
 i++;
 }

}
else

 {for(k=h;k<=mid;k++)
{b[i]=a[k];
 i++;

 }
 }

 for(k=low;k<=high;k++) a[k]=b[k];
 }

void main()
 {int num,i;
 merge_sort obj;

cout<<"***"<<endl;
cout<<" MERGE SORT PROGRAM"<<endl;

cout<<"***"<<endl;
 cout<<endl<<endl;
 cout<<"How many ELEMENTS you want to sort : ";
 cin>>num;
 cout<<endl;

D A T A S T R U C T U R E S (CSC-214)

87 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

 cout<<"Enter the ("<< num <<") numbers :"<<endl;
 for(i=1;i<=num;i++)

{cin>>a[i] ; }
 obj.sort(1,num);
 cout<<endl;
 cout<<"So, the sorted list (using MERGE SORT) will be :"<<endl;
 cout<<endl<<endl;
 for(i=1;i<=num;i++)

cout<<a[i]<<" ";
 cout<<endl<<endl<<endl<<endl;
}

Radix Sort:
Radix sort is the method that many people intuitively use when alphabetizing

a large list of names. (Here the radix is 26, the 26 letters of alphabets.
The basic procedure of radix sort is as follow:

• Based on examining digits in some base-b numeric representation of items
(or keys)

• Least significant digit radix sort
 Processes digits from right to left

• Create groupings of items with same value in specified digit
 Collect in order and create grouping with next significant digit

Input 0 1 2 3 4 5 6 7 8 9
55 55
24 24
92 92
40 40

Input 0 1 2 3 4 5 6 7 8 9
40 40
92 92
24 24
55 55

Input 0 1 2 3 4 5 6 7 8 9
24 24
40 40
55 55
92 92

55 24 92 40

24 40 55 92

D A T A S T R U C T U R E S (CSC-214)

88 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

C++ Code (RADIX SORT):

#include <iostream.h>
#include <conio.h>
int const MAX = 100;
int A[MAX];
int C[MAX][10];
int N;
class Radix_sort

{public:
void get();
void radix(int);
void display();

};
void Radix_sort::get()

{cout<<"\n\tHow many values you want to sort -->";
 cin>>N;
 if(N>MAX)

{cout<<"\n\n Maximum number of values is "<<MAX<<".\n please try
again....";

 getche();
 get();
}

 int i=0;
 cout<<"\n Put "<<N<<" values..\n";
 for(i;i<N;i++)

{cin>>A[i];}
}

void Radix_sort::radix(int R)
{int i,j,X,D;
 int Z=0;
D=R/10;
 for(i=0;i<N;i++)

{for(j=0;j<10;j++)
{C[i][j]=-1;}

}
 for(i=0;i<N;i++)

Algorithm: RADIXSORT (A, N, R)
1. If N=1, then: Return.
2. Set D=R/10, P=-1.
3. Repeat for i=0,1,2 (N-1)

Repeat for j=0,1,2 . . . 9
Set C [i] [j] := -1.

4. Repeat for i=0,1,2 (N-1)
i. Set X=A [i] % R.
ii. Set m=X/D.
iii. If m>0, then: Set Z:=1.
iv. Set C [i] [m] = A [i].

5. Repeat for j=0,1,2 9
i. Repeat for j=0,1,2 (N-1)

1. If C [i] [j] ≠ -1,then:
a. Set P=P+1.
b. Set A [P]=C [i] [j].

6. If Z=1, then
RADIXSORT (A, N, R*10).

7. Return.

D A T A S T R U C T U R E S (CSC-214)

89 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

{X=A[i]%R;
 int m=X/D;
 if(m>0)Z=1;
 C[i][m]=A[i];
}

 int p=-1;
 for(j=0;j<10;j++)

{for(i=0;i<N;i++)
{if(C[i][j]!=-1)

{p++;
A[p]=C[i][j];

 }
}

}

 if(Z==1)
{R*=10;
 radix(R);
}

 }
void Radix_sort::display()

{clrscr();
 cout<<"\n\n\t\t\t Sorted List\n\n";
 for(int i=0;i<N;i++)

{cout<<A[i]<<"\t";}
}

void main()
{
 Radix_sort obj;
 obj.get();
 if(N>1)obj.radix(10);
 obj.display();

}

Quick Sort(An Application of STACKS):
 Let A be a list of n data items “sorting A” refers to the operation of

rearranging the elements of A so that they are in some logical order. Such as
numerically ordered when A contains numerical data, or alphabetically ordered when
A contains character data.

Quick sort is an algorithm of the divide-and-conquer type. That is, the
problem of sorting a set is reduced to the problem of sorting two smaller sets.

Algorithm: QUICKSORT (A, LEFT, RIGHT)

1. If LEFT ≥ RIGHT, then: Return.
2. Set MIDDLE = PARTITION (A, LEFT, RIGHT).
3. Call QUICKSORT (A, LEFT, MIDDLE-1).
4. Call QUICKSORT (A, MIDDLE+1, RIGHT).
5. Return.

Algorithm: PARTITION (A, LEFT, RIGHT)
1. Set X = A[LEFT].
2. Set I = LEFT.
3. Repeat for j = LEFT+1,LEFT+2, RIGHT

If A[j] < X, then:
Set i = i+1.
Call SWAP (A[i], A[j]).

4. Call SWAP (A[i], A[LEFT].
5. Return i.

D A T A S T R U C T U R E S (CSC-214)

90 Shahid Iqbal (Lecturer) Computer College
Qassim University Kingdom of Saudi Arabia

C++ Code (QUICK SORT):
#include <iostream.h>
#include <conio.h>
int const MAX=100;
int A[MAX];
int N;
class quick

{public:
void get();
void quick_sort(int ,int);
int partition(int , int);
void display();

};
void quick::get()

{cout<<"\n\n How many values you want to sort --> ";
 cin>>N;
 if(N>MAX)

{cout<<"\n\n \t Maximum number of values is "<<MAX<<" so try
again...";

 getche();
 get();
}

 cout<<"\n\t\t Put "<<N<<" random values..\n\n";
 for(int i=0;i<N;i++)

{cin>>A[i];}
};

void quick::quick_sort(int LEFT, int RIGHT)
{if(LEFT>=RIGHT)return;
 int MIDDLE=partition(LEFT,RIGHT);
 quick_sort(LEFT,MIDDLE-1);
 quick_sort(MIDDLE+1,RIGHT);
}

int quick::partition(int LEFT, int RIGHT)
{int X=A[LEFT];
 int i=LEFT;
 for(int j=LEFT+1;j<=RIGHT;j++)

{if(A[j]<X)
{i++;
 int temp=A[i];
 A[i]=A[j];
 A[j]=temp;
}

}
 int temp=A[i];
 A[i]=A[LEFT];
 A[LEFT]=temp;
 return i;
}

void quick::display()
{clrscr();
 cout<<"\n\n\n\n\t\t\t\t Sorted List\n\n";
 cout<<"\t\t\t\t(QUICK SORT)\n\n\n";
 for(int i=0;i<N;i++)

{cout<<A[i]<<"\t";}
}

void main()
{
 quick obj;
 obj.get();
 obj.quick_sort(0,N-1);
 obj.display();

}

	Pointers
	What is a Pointer?
	Pointers and Arrays
	Pointer and Functions
	Pointers and Structures
	Home Work

