
ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

1

Binary Trees

Trees

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

2

Advantages of Trees

• Trees reflect structural relationships in the

data

• Trees are used to represent hierarchies

• Trees provide an efficient insertion and

searching

• Trees are very flexible data structures,

allowing to move subtrees around with

minimum effort

A binary tree

• Definition: A binary tree is either empty or consists

of a node called the root together with two binary

trees called the left subtree and the right subtree.

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

3

5

Parts of a binary tree

• A binary tree is composed of zero or more nodes

• Each node contains:

– A value (some sort of data item)

– A reference or pointer to a left child (may be null), and

– A reference or pointer to a right child (may be null)

• A binary tree may be empty (contain no nodes)

• If not empty, a binary tree has a root node

– Every node in the binary tree is reachable from the

root node by a unique path

• A node with neither a left child nor a right child is

called a leaf

Parts of a binary tree

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

4

7

Picture of a binary tree

Types of Binary Trees

• A full binary tree (sometimes proper binary tree or 2-tree or

strictly binary tree) is a tree in which every node other than the

leaves has two children.

• A perfect binary tree is a full binary tree in which all leaves are at

the same depth or same level, and in which every parent has two

children

• A complete binary tree is a binary tree in which every level, except

possibly the last, is completely filled, and all nodes are as far left as

possible

• A balanced binary tree is commonly defined as a binary tree in

which the depth of the two subtrees of every node never differ by

more than 1

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

5

?

10

Size and depth (or height)

• The size of a binary tree is
the number of nodes in it
– This tree has size 12

• The depth of a node is its
distance from the root
– a is at depth zero

– e is at depth 2

• The depth of a binary tree
is the depth of its deepest
node
– This tree has depth 4

a

b c

d e f

g h i j k

l

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

6

11

Balance Binary Trees

• A binary tree is balanced if every level above the lowest is “full”
(contains 2n nodes)

• In most applications, a reasonably balanced binary tree is desirable

a

b c

d e f g

h i j

A balanced binary tree

a

b

c

d

e

f

g h

i j

An unbalanced binary tree

Height of a Binary Tree

• If h = height of a binary tree,

max # of leaves = 2h

max # of nodes = 2h + 1 - 1

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

7

13

Binary search in an array

• Look at array location (lo + hi)/2

2 3 5 7 11 13 17

0 1 2 3 4 5 6

Searching for 5:

(0+6)/2 = 3

hi = 2;
(0 + 2)/2 = 1 lo = 2;

(2+2)/2=2
7

3 13

2 5 11 17

Using a binary

search tree

Huffman Coding – A Binary Tree

Application [David A Huffman’ 52]

• Suppose we have a message made from the five characters a,

b, c, d, e, with probabilities 0.12, 0.40, 0.15, 0.08, 0.25,

respectively

Symbol Prob code 1 code 2

a 0.12 000 000

b 0.40 001 11

c 0.15 010 01

d 0.08 011 001

e 0.25 100 10

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

8

Huffman’s Coding cont…

Average length per character

Code 1: (0.12)(3) + (0.4)(3) + (0.15)(3) + (0.08)(3) + (0.25)(3) = 3

Code 2: (0.12)(3) + (0.4)(2) + (0.15)(2) + (0.08)(3) + (0.25)(2) = 2.2

Huffman’s Coding cont…

• So the resulting “average length per

character” = ?

• And the resulting Huffman tree for the

example ?

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

9

17

Binary Tree traversals

• A binary tree is defined recursively: it consists of a root, a

left subtree, and a right subtree

• To traverse (or walk) the binary tree is to visit each node in

the binary tree exactly once

• Tree traversals are naturally recursive

• Since a binary tree has three “parts,” there are six possible

ways to traverse the binary tree:

– root, left, right

– left, root, right

– left, right, root

– root, right, left

– right, root, left

– right, left, root

Binary Tree Traversals

• Depth First Traversals

– Preorder

– Inorder

– Postorder

• Breadth First Traversal

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

10

19

Preorder Traversal

• In preorder, the root is visited first

• Here’s a preorder traversal to print out all

the elements in the binary tree:

public void preorder(BinaryTree bt) {
if (bt == null) return;
printf(bt.value);
preorder (bt.leftChild);
preorder (bt.rightChild);

}

20

Inorder Traversal

• In inorder, the root is visited in the middle

• Here’s an inorder traversal to print out all

the elements in the binary tree:

public void inorder (BinaryTree bt) {
if (bt == null) return;
inorder(bt.leftChild);
printf(bt.value);
inorder(bt.rightChild);

}

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

11

21

Postorder Traversal

• In postorder, the root is visited last

• Here’s a postorder traversal to print out all

the elements in the binary tree:

public void postorder(BinaryTree bt) {
if (bt == null) return;
postorder(bt.leftChild);
postorder(bt.rightChild);
printf(bt.value);

}

Tree Traversals – An Example

Depth-first

Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)
Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right)
Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

12

23

Tree traversals using “flags”

• The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

• To traverse the tree, collect the flags:

preorder inorder postorder

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C A

24

Other traversals

• The other traversals are the reverse of these
three standard ones

– That is, the right subtree is traversed before the
left subtree is traversed

• Reverse preorder: root, right subtree, left
subtree

• Reverse inorder: right subtree, root, left
subtree

• Reverse postorder: right subtree, left subtree,
root

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

13

Binary Tree as Expression Tree

Binary Tree as Expression Tree

• Traversing the expression tree using

– Preorder: results in to prefix code

– In-order: results in to infix code

(same expression)

– Post-order: results in to postfix (reverse polish)

code

• Find these codes for this example

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

14

Summary (Trees)

• A non-linear, hierarchical, and recursive data structures

• Form the basis of many useful and efficient data
structures

• Traversals

– Depth first
• Pre-order

• In-order

• Post-order

– Breadth First Traversal

• Applications of Binary Trees

– Huffman coding

– Expression Trees

27

