

Graphs: Minimum Spanning Trees

Atul Gupta

Graphs

- Most un-restricted form of data organization
- · Final destination for problem solving
- · Many variances
 - Directed and un-directed graphs
 - Connected and un-connected graphs
 - Weighted graphs

- Minimum Spanning Tree
- Path Problems
 - Simple Paths
 - Shortest Path Problem
 - · Single source shortest paths
 - · All-pair shortest paths
 - Find Cycles
 - Euler Path and Circuit Problem
 - Hamiltonian Path and Circuit Problem (or TSP)
- Graph Coloring
- · Connected Components
- Isomorphic graphs
- · Search Graphs

Minimum Spanning Tree

- Minimize the connecting media
- A tree with minimum weights
- Two Algorithms
 - Prim's MST
 - Kruskal's MST

A Generic Spanning Tree

GENERIC-MST(G, w)

- $1 \quad A = \emptyset$
- 2 **while** A does not form a spanning tree
- 3 find an edge (u, v) that is safe for A
- $A = A \cup \{(u, v)\}$
- 5 return A

Prim's MST Algorithm

- The Idea:
 - Start with an empty set of vertices, A and S stores all the vertices of the graph
 - Initialize a key vector, key[u] for all u from 1 to n to ∞
 - Key[r] \leftarrow 0; A \leftarrow A union r
 - Put all the vertices in a priority Q except the starting one
 - while Q is not empty
 - u ← Extract-Min(Q)
 - for all v ∈ adj[u] and not in A update key[v]
 - Another example of a greedy approach

Prim's MST Algorithm

```
MST-PRIM(G, w, r)
1 for each u \in V[G] do
             key[u] \leftarrow \infty
             \pi[u] \leftarrow \mathit{NIL}
4 \text{ key}[r] \leftarrow 0
5 Q \leftarrow V[G]
6 while Q ≠ Ø do
             u \leftarrow EXTRACT-MIN(Q)
8
             for each v ∈ Adj[u] do
9
                          if v \in Q and w(u, v) < key[v]
10
                          then \pi[v] \leftarrow u
11
                          key[v] \leftarrow w(u,v)
```


Kruskal's MST Algorithm

• The Idea

Kruskal's MST Algorithm

```
MST-KRUSKAL(G, w)
1 A ← Ø
2 sort (E) //sort the edges of E into nondecreasing
  order by weight w
3 for each edge (u, v) ∈ E do
4     if (A U (u, v) ≠ cycle)
5         then INSERT (A, (u, v))
6 return A
```


Instructor - Dr Atul Gupta

Minimum Spanning Trees

- A tree of the nodes of the graph with minimum total edge weight.
- · Both Prim's and Kruskal's algorithms are examples of greedy approach of problem solving
- Applications
 - Reducing copper to connect multiple nodes in a electrical/electronic circuit
 - Minimizing network length (cable cost) to connect multiple routers/computers
 - and similar

Stacks 32