ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

7]

Graphs: Minimum Spanning Trees

Atul Gupta

@ Graphs

* Most un-restricted form of data organization
* Final destination for problem solving
« Many variances /\/ \‘//

— Directed and un-directed graphs
— Connected and un-connected graphs

— Welghted graphs Z),
\/ l \f B }

~|I4I

@ “ﬁ'aif g

\/\f:

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ Representations of a Graph

Undirected Graph
— Adjacency List
— Adjacency Matrix

12345
1 2 P51/ 1o 1001
(D (2) 2 L P[5 PBE]F4]] 2010 1 11
3 2 P{a]/ 300 1010
©) 4 e E1% 40 11 01
() (4 5 a B[P2/ 5011010
(a) (b) ()
D Representations (Di-Graph)
* Adjacency List
* Adjacency Matrix
123456
1 2| PH4]/] 1{o 10100
2 51/ 200 0001 0
(1) (2) (3) 3 6] P5]/] 310 00 0 1 1
4 2/ 410 10000
5 4]/ 5000100
(4) (5) O» 6 6]/ 6{0 000 0 1
() (b) (©

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@Problems Specific with Graphs

* Minimum Spanning Tree
e Path Problems

— Simple Paths

— Shortest Path Problem

« Single source shortest paths
* All-pair shortest paths

— Find Cycles
— Euler Path and Circuit Problem
— Hamiltonian Path and Circuit Problem (or TSP)
* Graph Coloring
* Connected Components
* Isomorphicgraphs
* Search Graphs

@ Minimum Spanning Tree

* Minimize the connecting media
* Atree with minimum weights

* Two Algorithms
— Prim’s MIST
— Kruskal’s MIST

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ A Generic Spanning Tree

GENERIC-MST(G, w)

1 A=90

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

5 return A

@ Prim’s MST Algorithm

* The ldea:

— Start with an empty set of vertices, A and S stores all the
vertices of the graph

— Initialize a key vector, key[u] for all u from 1 ton to
— Key[r] € 0; A< Aunionr
— Put all the vertices in a priority Q except the starting one
— while Q is not empty

e u € Extract-Min(Q)

 forallv e adj[u] and notin A

update key[v]

— Another example of a greedy approach

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

4 Prim’s MIST Algorithm

MST-PRIM(G, w, r)

1for eachu € V[G] do

2 key[u] & oo

3 nfu] < NIL

4 key[r] & 0

5Q<« V[G]

6 while Q # @ do

7 u & EXTRACT-MIN(Q)

8 for each v € Adj[u] do

9 if vE€ Q and w(u, v) < key[v]
10 thenn[v] ¢ u
11 key[v] & w(u, v)

@An Example: Prim’s Algorithm

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ An Example: Prim’s Algorithm

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ An Example: Prim’s Algorithm

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ An Example: Prim’s Algorithm

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ An Example: Prim’s Algorithm

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ An Example: Prim’s Algorithm

@ Kruskal’s MIST Algorithm

* The ldea

10

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

@ Kruskal’s MIST Algorithm

MST-KRUSKAL(G, w)
1A& P

2 sort (E) //sort the edges of E into nondecreasing
order by weight w

3 for each edge (u, v) EE do

4 if (AU (u, v) #cycle)

5 then INSERT (A, (u, v))
6 return A

i' I An Example: Kruskal’s Algorithm

11

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

i' I An Example: Kruskal’s Algorithm

12

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

i' I An Example: Kruskal’s Algorithm

13

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

i' I An Example: Kruskal’s Algorithm

14

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

i' I An Example: Kruskal’s Algorithm

15

ES 103: Data Structures and Algorithms 2012
Instructor — Dr Atul Gupta

i' I An Example: Kruskal’s Algorithm

@ Minimum Spanning Trees

* Atree of the nodes of the graph with minimum total
edge weight.

* Both Prim’s and Kruskal’s algorithms are examples of
greedy approach of problem solving

* Applications

— Reducing copper to connect multiple nodes in a
electrical/electronic circuit

— Minimizing network length (cable cost) to connect multiple
routers/computers

— and similar

Stacks 32

